Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
225 result(s) for "Chevalier, V."
Sort by:
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA) for the purpose of the CABRI International Program (CIP), managed by IRSN in the framework of an OECD/NEA agreement. The hodoscope equipment installed in the CABRI reactor is an almost unique online fuel motion monitoring system, thanks to the measurement of the fast neutrons emitted during a power pulse by a tested rod positioned inside a dedicated test loop reproducing PWR conditions. This system is dedicated to the analysis of fuel displacement. Hence, one of the most important parameter measured by the hodoscope detectors is the Signal over Noise Ratio (SNR), characterizing the fraction of neutrons directly coming from the test rod (“signal”) over neutrons coming from the core (“noise”). It is interesting to calculate the SNR in order to define some quantitative criterions to improve hodoscope measurements and to understand if any modification linked to the test loop may significantly change this essential parameter. Another parameter of interest is the so-called “scattering coefficient”, which corresponds to the fraction of neutrons coming from the test rod and being scattered between their birth and their detection. This parameter is used to enhance the analysis of the fuel displacement which may happen during the power transient. In this article, the method used to calculate the SNR using MCNP6.2 Monte Carlo code will be detailed. Because the hodoscope detectors are located far away from the test rod (up to 4 meters), a 2D model of CABRI core and instrumentation has been implemented. No variance reduction techniques have been used to solve this problem in order to record the place of birth of neutron which contributes to the different scores with the goal to perform a detailed analysis of the SNR. This strategy allows to access numerically to the “scattering coefficient”. Finally, the comparison between calculated and measured SNR for a case study will be carried out. A quite good agreement between the 2D simulations and experiments recently performed in the CABRI reactor has been obtained.
The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart
The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.
Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core
The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.
Empirical analysis suggests continuous and homogeneous circulation of Newcastle disease virus in a wide range of wild bird species in Africa
Newcastle disease (ND) is one of the most important poultry diseases worldwide and can lead to annual losses of up to 80% of backyard chickens in Africa. All bird species are considered susceptible to ND virus (NDV) infection but little is known about the role that wild birds play in the epidemiology of the virus. We present a long-term monitoring of 9000 wild birds in four African countries. Overall, 3·06% of the birds were PCR-positive for NDV infection, with prevalence ranging from 0% to 10% depending on the season, the site and the species considered. Our study shows that ND is circulating continuously and homogeneously in a large range of wild bird species. Several genotypes of NDV circulate concurrently in different species and are phylogenetically closely related to strains circulating in local domestic poultry, suggesting that wild birds may play several roles in the epidemiology of different NDV strains in Africa. We recommend that any strategic plan aiming at controlling ND in Africa should take into account the potential role of the local wild bird community in the transmission of the disease.
Environmental risk factors of West Nile virus infection of horses in the Senegal River basin
In 2005, a serological study was carried out on horses in five ecologically contrasted zones of the Senegal River basin (Senegal) to assess West Nile virus (WNV) transmission and investigate underlying environmental risk factors. In each study zone, horses were randomly selected and blood samples taken. A land-cover map of the five study areas was built using two satellite ETM+ images. Blood samples were screened by ELISA for anti-WNV IgM and IgG and positive samples were confirmed by seroneutralization. Environmental data were analysed using a principal components analysis. The overall IgG seroprevalence rate was 85% (n=367; 95% CI 0·81–0·89). The proximity to sea water, flooded banks and salted mudflats were identified as protective factors. These environmental components are unfavourable to the presence of Culex mosquitoes suggesting that in Senegal, the distribution of the vector species is more limiting for WNV transmission than for the hosts' distribution.
Africa, a reservoir of new virulent strains of Newcastle disease virus?
[...]Mopti and Sikasso represent ideal sites to study the interaction between domestic and wild bird populations and between bird populations from different West African countries. [...]whether the chicken/MG/725T/2008 virus isolated is a genetic variant of the initial genotype III or IV or another genotype introduced in Madagascar after 1960 requires further analyses.
Environmental predictors of West Nile fever risk in Europe
Background West Nile virus (WNV) is a mosquito-borne pathogen of global public health importance. Transmission of WNV is determined by abiotic and biotic factors. The objective of this study was to examine environmental variables as predictors of WNV risk in Europe and neighboring countries, considering the anomalies of remotely sensed water and vegetation indices and of temperature at the locations of West Nile fever (WNF) outbreaks reported in humans between 2002 and 2013. Methods The status of infection by WNV in relationship to environmental and climatic risk factors was analyzed at the district level using logistic regression models. Temperature, remotely sensed Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index (MNDWI) anomalies, as well as population, birds’ migratory routes, and presence of wetlands were considered as explanatory variables. Results The anomalies of temperature in July, of MNDWI in early June, the presence of wetlands, the location under migratory routes, and the occurrence of a WNF outbreak the previous year were identified as risk factors. The best statistical model according to the Akaike Information Criterion was used to map WNF risk areas in 2012 and 2013. Model validations showed a good level of prediction: area under Receiver Operator Characteristic curve = 0.854 (95% Confidence Interval 0.850-0.856) for internal validation and 0.819 (95% Confidence Interval 0.814-0.823) (2012) and 0.853 (95% Confidence Interval 0.850-0.855) (2013) for external validations, respectively. Conclusions WNF incidence is increasing in Europe and WNV is expanding into new areas where it had never been observed before. Our model can be used to direct surveillance activities and public health interventions for the upcoming WNF season.
Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa
Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730-0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.
Intensive Circulation of Japanese Encephalitis Virus in Peri-urban Sentinel Pigs near Phnom Penh, Cambodia
Despite the increased use of vaccination in several Asian countries, Japanese Encephalitis (JE) remains the most important cause of viral encephalitis in Asia in humans with an estimated 68,000 cases annually. Considered a rural disease occurring mainly in paddy-field dominated landscapes where pigs are amplifying hosts, JE may nevertheless circulate in a wider range of environment given the diversity of its potential hosts and vectors. The main objective of this study was to assess the intensity of JE transmission to pigs in a peri-urban environment in the outskirt of Phnom Penh, Cambodia. We estimated the force of JE infection in two cohorts of 15 sentinel pigs by fitting a generalised linear model on seroprevalence monitoring data observed during two four-month periods in 2014. Our results provide evidence for intensive circulation of JE virus in a periurban area near Phnom Penh, the capital and most populated city of Cambodia. Understanding JE virus transmission in different environments is important for planning JE virus control in the long term and is also an interesting model to study the complexity of vector-borne diseases. Collecting quantitative data such as the force of infection will help calibrate epidemiological model that can be used to better understand complex vector-borne disease epidemiological cycles.