MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation
Journal Article

Analysis of the Signal over Noise Ratio of the hodoscope determined by Monte Carlo calculation

2021
Request Book From Autostore and Choose the Collection Method
Overview
The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA) for the purpose of the CABRI International Program (CIP), managed by IRSN in the framework of an OECD/NEA agreement. The hodoscope equipment installed in the CABRI reactor is an almost unique online fuel motion monitoring system, thanks to the measurement of the fast neutrons emitted during a power pulse by a tested rod positioned inside a dedicated test loop reproducing PWR conditions. This system is dedicated to the analysis of fuel displacement. Hence, one of the most important parameter measured by the hodoscope detectors is the Signal over Noise Ratio (SNR), characterizing the fraction of neutrons directly coming from the test rod (“signal”) over neutrons coming from the core (“noise”). It is interesting to calculate the SNR in order to define some quantitative criterions to improve hodoscope measurements and to understand if any modification linked to the test loop may significantly change this essential parameter. Another parameter of interest is the so-called “scattering coefficient”, which corresponds to the fraction of neutrons coming from the test rod and being scattered between their birth and their detection. This parameter is used to enhance the analysis of the fuel displacement which may happen during the power transient. In this article, the method used to calculate the SNR using MCNP6.2 Monte Carlo code will be detailed. Because the hodoscope detectors are located far away from the test rod (up to 4 meters), a 2D model of CABRI core and instrumentation has been implemented. No variance reduction techniques have been used to solve this problem in order to record the place of birth of neutron which contributes to the different scores with the goal to perform a detailed analysis of the SNR. This strategy allows to access numerically to the “scattering coefficient”. Finally, the comparison between calculated and measured SNR for a case study will be carried out. A quite good agreement between the 2D simulations and experiments recently performed in the CABRI reactor has been obtained.