Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Ching, Krystal L."
Sort by:
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond
Macrophages play critical roles in immunity, development, tissue repair, and cancer, but studies of their function have been hampered by poorly-differentiated tumor cell lines and genetically-intractable primary cells. Here we report a facile system for genome editing in non-transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host genetics during intracellular bacterial infection using two important human pathogens: Listeria monocytogenes and Mycobacterium tuberculosis.
Decoy exosomes provide protection against bacterial toxins
The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) 1 – 3 . It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin 4 —a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues 2 , 5 , 6 . Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes—extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins. In response to infection with Staphylococcus aureus in vitro and in vivo, host cells increase their secretion of exosomes containing ADAM10—vesicular structures that can provide protection by sequestering bacterial toxins.
Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis
Intestinal adaptive immune responses influence host health, yet only a few intestinal bacteria species that induce cognate adaptive immune responses during homeostasis have been identified. Here, we show that Akkermansia muciniphila, an intestinal bacterium associated with systemic effects on host metabolism and PD-1 checkpoint immunotherapy, induces immunoglobulin G1 (IgG1) antibodies and antigen-specific T cell responses in mice. Unlike previously characterized mucosal responses, T cell responses to A. muciniphila are limited to T follicular helper cells in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila–specific responses are context dependent and adopt other fates in conventional mice. These findings suggest that, during homeostasis, contextual signals influence T cell responses to the microbiota and modulate host immune function.
Investigating the Role of Autophagy and Innate Immune Signaling in Defensosome Production
Autophagy controls cellular fitness during perturbations such as nutrient deprivation and hypoxia by facilitating the formation of vesicles called autophagosomes which engulf cytosolic material and fuse with the lysosome for degradation. While the homeostatic function of autophagy is well characterized, its contribution to immunity is less defined. Our labs recently found a novel non-degradative role for the autophagy protein ATG16L1 in mediating protection against pore forming toxins produced by Staphylococcus aureus through the release of exosomes harboring the cognate receptor, ADAM10. Exosomes are small extracellular vesicles (EVs) secreted by all cell types that carry various substrates with pleiotropic functions in cell growth and communication. We defined this subset of exosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins (ATGs) as ‘defensosomes’. However, to what extent defensosomes are used as a defense mechanism against other pathogens remains unknown. Given defects in autophagy have been linked to increased susceptibility to viral infections, we investigated the role of defensosomes against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Consistent with a protective function, higher levels of exosomes containing the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients were associated with reduced hospitalization times. We show that ACE2+ defensosomes can directly bind virions and block viral entry, and that induction requires activation of viral sensors and the presence of ATG16L1. Finally, we investigated the cell biological mechanisms regulating defensosome production following recognition of microbial ligands through TLR9. Using genetic screens and ultrastructural microscopy, we uncovered that TLR9 signaling inhibits lysosomal fusion with multivesicular bodies (MVBs) by inducing the dissociation of Rab7. We further demonstrate that ATG16L1 has a role in promoting intraluminal budding upstream of TLR9 activation. Altogether, our findings support a mechanism where TLR9 signaling and ATG16L1 work in parallel to promote defensosome production during infection.
Cas9.sup.+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond
Macrophages play critical roles in immunity, development, tissue repair, and cancer, but studies of their function have been hampered by poorly-differentiated tumor cell lines and genetically-intractable primary cells. Here we report a facile system for genome editing in non-transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host genetics during intracellular bacterial infection using two important human pathogens: Listeria monocytogenes and Mycobacterium tuberculosis.
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection. Competing Interest Statement The authors have declared no competing interest.
Cas9+ conditionally immortalized neutrophil progenitors as a tool for genome wide CRISPR screening for neutrophil differentiation and function
Neutrophils are short-lived cells of the innate immune system that play numerous roles in defense against infection, regulation of immune responses, tissue damage and repair, autoimmunity, and other non-communicable diseases. Understanding neutrophil function at a mechanistic level has been hampered by the difficulty of working with primary neutrophils, which die rapidly upon isolation, and the relative paucity of neutrophil cell lines. Murine neutrophil progenitors that are immortalized with estrogen-regulated expression of Hoxb8 differentiate into neutrophils upon withdrawal of estrogen and facilitate the quantitative production of neutrophils in vitro. Here we report the creation of a Cas9+ER-Hoxb8 neutrophil progenitor cell line that enables both forward and reverse genetic analysis of neutrophils for the first time. By editing progenitors via transduction with sgRNAs, and then withdrawing estrogen, Cas9 edited neutrophils are produced with high efficiency. Importantly, neutrophil differentiation of edited progenitors occurs both in vitro in cell culture and when transferred into murine recipients. To demonstrate the utility of Cas9+ER-Hoxb8 progenitors for forward genetics, we performed a pooled CRISPR screen to identify factors required for survival during neutrophil differentiation. This screen identified hundreds of genes both negatively and positively selected under differentiation conditions. One of the top hits from this screen was Cebpe, a transcription factor known to be required for neutrophil differentiation from pre-neutrophils to immature neutrophils. Using the progenitor cell line, we also confirmed that Cepbe is required for neutrophil differentiation in vivo, validating the utility of this cell line both for screening and for studying in vivo phenotypes. The genome-wide screen also identified all components of the WASH complex as being required for neutrophil differentiation, a finding that extends the known role of WASH in hematopoietic stem cell differentiation to later stages of neutrophil development. Taken together, we demonstrate that Cas9+ER-Hoxb8 immortalized neutrophils can be used to study neutrophil function both in vitro and in vivo. This new resource will enable the analysis of the role of neutrophils in numerous disease states using genetics for the first time.
Examining the association between posttraumatic stress disorder and disruptions in cortical networks identified using data-driven methods
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
Geography Influences Susceptibility to SARS-CoV-2 Serological Response in Patients With Inflammatory Bowel Disease: Multinational Analysis From the ICARUS-IBD Consortium
Abstract Background Beyond systematic reviews and meta-analyses, there have been no direct studies of serological response to COVID-19 in patients with inflammatory bowel disease (IBD) across continents. In particular, there has been limited data from Asia, with no data reported from India. The ICARUS-IBD (International study of COVID-19 Antibody Response Under Sustained immunosuppression in IBD) consortium assessed serological response to SARS-CoV-2 in patients with IBD in North America, Europe, and Asia. Methods The ICARUS-IBD study is a multicenter observational cohort study spanning sites in 7 countries. We report seroprevalence data from 2303 patients with IBD before COVID-19 vaccination between May 2020 and November 2021. SARS-CoV-2 anti-spike and anti-nucleocapsid antibodies were analyzed. Results The highest and lowest SARS-CoV-2 anti-spike seropositivity rates were found in Asia (81.2% in Chandigarh and 57.9% in Delhi, India; and 0% in Hong Kong). By multivariable analysis, country (India: odds ratio [OR], 18.01; 95% confidence interval [CI], 12.03-26.95; P < .0001; United Kingdom: OR, 2.43; 95% CI, 1.58-3.72; P < .0001; United States: OR, 2.21; 95% CI, 1.27-3.85; P = .005), male sex (OR, 1.46; 95% CI, 1.07-1.99; P = .016), and diabetes (OR, 2.37; 95% CI, 1.04-5.46; P = .039) conferred higher seropositivity rates. Biological therapies associated with lower seroprevalence (OR, 0.22; 95% CI, 0.15-0.33; P < .0001). Multiple linear regression showed associations between anti-spike and anti-nucleocapsid titers with medications (P < .0001) but not with country (P = .3841). Conclusions While the effects of medications on anti-SARS-CoV-2 antibody titers in patients with IBD were consistent across sites, geographical location conferred the highest risk of susceptibility to serologically detectable SARS-CoV-2 infection. Over half of IBD patients in India were seropositive prior to vaccination. These insights can help to inform shielding advice, therapeutic choices, and vaccine strategies in IBD patients for COVID-19 and future viral challenges. Lay Summary In this multinational study of SARS-CoV-2 seroprevalence prior to vaccination, including the first data from India, where over half of patients seroconverted, geographical location conferred the highest risk of susceptibility to serologically detectable infection.