Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33
result(s) for
"Chiong, Mario"
Sort by:
Counter-regulatory renin–angiotensin system in cardiovascular disease
by
García Lorena
,
Lavandero Sergio
,
Paz, Ocaranza Maria
in
Blood pressure
,
Cardiovascular disease
,
Chronic illnesses
2020
The renin–angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II — initially thought to be biologically inactive — have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin–angiotensin system consists of angiotensin 1–7, angiotensin 1–9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin–angiotensin system. This counter-regulatory renin–angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin–angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.The non-canonical axis of the renin–angiotensin system (RAS) has an important role in cardiovascular physiology and disease. In this Review, Ocaranza and colleagues discuss the interplay between components of the counter-regulatory RAS and the therapeutic potential of targeting this system to treat cardiovascular disease.
Journal Article
Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology
by
Lavandero, Sergio
,
Lopez-Crisosto, Camila
,
Vasquez-Trincado, Cesar
in
631/80/642/1463
,
631/80/642/333
,
692/4019/592/75
2017
Key Points
Sarco/endoplasmic reticulum–mitochondria communication and mitochondrial dynamics are essential regulators of mitochondrial function, cellular metabolism, and calcium homeostasis
Sarco/endoplasmic reticulum–mitochondria contacts and mitochondrial dynamics modulate myocardial contractility and vascular smooth muscle cell differentiation
Alterations in sarco/endoplasmic reticulum–mitochondria communication and in mitochondrial network morphology are implicated in several cardiovascular pathologies, including heart failure, coronary artery disease, and pulmonary hypertension
More studies are required to define the role that alterations in sarco/endoplasmic–mitochondria contacts and mitochondrial dynamics have in the pathogenesis of cardiovascular diseases
Mitochondrial metabolism is essential for the dynamic regulation of cardiac and vascular tissues, and the relevance of basic mitochondrial biology in cardiovascular disease is being increasingly recognized. In this Review, the authors explore the physical interaction between mitochondria and sarco/endoplasmic reticulum, discussing how the communication between these two organelles is involved in cardiovascular pathologies.
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum–mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum–mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Journal Article
Cilium-by-cilium: unveiling hidden proteomic diversity and the molecular basis of ciliopathies
2026
In a recent study published in Cell, Hansen et al. applied antibody-based spatial proteomics and advanced confocal imaging to build a comprehensive single-organelle-resolution proteome atlas of the human primary cilium from three cell types —hTERT-RPE1 cells from the embryonic retina, RPTEC/TERT1 cells from the epithelial kidney proximal tubules, and the mesenchymal, multipotent, stromal ASC52telo cells—, identifying 715 proteins and revealing marked cell-type and single-cilium variability.1 This work demonstrates that primary cilia are highly customizable signaling hubs whose proteomic diversity provides a robust framework for understanding cilia-dependent signaling and uncovering the molecular basis of ciliopathies. Ellipses represent insights gained from the analysis of the ciliary proteome The antibody-based approach used by Hansen et al. provided significant advantages over previous proximity-labeling methods like APEX and BioID,4 which are limited by bulk population averaging, off-target labeling, fusion tag artifacts, and their inability to resolve single-cilium diversity or to be applied in patient tissue samples. Most compellingly, a child with multiple ciliopathy-like symptoms was found to carry a novel CREB3 mutation. [...]the atlas offers a new approach to identifying candidate disease genes in undiagnosed patients with multisystem disorders associated with ciliopathies. Future work integrating this spatial proteomics framework with genetic perturbations, live-cell imaging, and spatial transcriptomics or metabolomics in organoids and animal models will be essential to link ciliary localization to signaling output, tissue-specific physiology, and disease phenotypes. [...]systematic application of this approach to patient-derived cells and well-characterized ciliopathy cohorts could help prioritize variant interpretation and uncover how organ-level context modulates ciliary signaling networks in vivo.
Journal Article
Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line
by
Mondaca-Ruff, David
,
Riquelme, Jaime A.
,
Morales, Pablo E.
in
Animals
,
Aorta
,
Arteriosclerosis
2018
Vascular smooth muscle cells (VSMC) dedifferentiation from a contractile to a synthetic phenotype contributes to atherosclerosis. Atherosclerotic tissue has a chronic inflammatory component with high levels of tumor necrosis factor-α (TNF-α). VSMC of atheromatous plaques have increased autophagy, a mechanism responsible for protein and intracellular organelle degradation. The aim of this study was to evaluate whether TNF-α induces phenotype switching of VSMCs and whether this effect depends on autophagy. Rat aortic Vascular smooth A7r5 cell line was used as a model to examine the phenotype switching and autophagy. These cells were stimulated with TNF-α 100 ng/mL. Autophagy was determined by measuring LC3-II and p62 protein levels. Autophagy was inhibited using chloroquine and siRNA Beclin1. Cell dedifferentiation was evaluated by measuring the expression of contractile proteins α-SMA and SM22, extracellular matrix protein osteopontin and type I collagen levels. Cell proliferation was measured by [3H]-thymidine incorporation and MTT assay, and migration was evaluated by wound healing and transwell assays. Expression of IL-1β, IL-6 and IL-10 was assessed by ELISA. TNF-α induced autophagy as determined by increased LC3-II (1.91±0.21, p<0.001) and decreased p62 (0.86±0.02, p<0.05) when compared to control. Additionally, TNF-α decreased α-SMA (0.74±0.12, p<0.05) and SM22 (0.54±0.01, p<0.01) protein levels. Consequently, TNF-α induced migration (1.25±0.05, p<0.05), proliferation (2.33±0.24, p<0.05), and the secretion of IL-6 (258±53, p<0.01), type I collagen (3.09±0.85, p<0.01) and osteopontin (2.32±0.46, p<0.01). Inhibition of autophagy prevented all the TNF-α-induced phenotypic changes. TNF-α induces phenotype switching in A7r5 cell line by a mechanism that required autophagy. Therefore, autophagy may be a potential therapeutic target for the treatment of atherosclerosis.
Journal Article
17-beta estradiol prevents cardiac myocyte hypertrophy by regulating mitochondrial E3 ubiquitin ligase 1
2025
Cardiac hypertrophy is a cellular process characterized by the increased size of cardiomyocytes in response to a high workload or stress. 17-beta estradiol (E2) has cardioprotective and anti-hypertrophic effects by maintaining mitochondrial network and function. MUL1 is a mitochondrial ubiquitin ligase directly involved in the control of mitochondrial fission and mitophagy. Studies from our group and others have previously shown that cardiomyocyte hypertrophy is associated with mitochondrial fission and dysfunction. These findings led us to study in vitro whether E2 regulates MUL1 to prevent cardiac hypertrophy, mitochondrial fission, and dysfunction induced by the catecholamine norepinephrine (NE). Our results showed that NE induces hypertrophy in cultured rat cardiomyocytes. Pre-treatment with E2 (10-100 nM) prevented the NE-dependent increases in cell perimeter and the hypertrophic stress markers ANP and BNP at both the protein and mRNA levels. NE induced the fragmentation of the mitochondrial network and reduced ATP levels, effects that were both prevented by E2.
In
s
ilico
analysis suggested a putative binding site for estrogen receptors on the MUL1 gene promoter. In accordance with this finding, E2 prevented increases in MUL1 mRNA and protein levels induced by NE. Our data also showed that a siRNA MUL1 knockdown counteracted NE-induced cardiomyocyte hypertrophy and mitochondrial dysfunction, mirroring the protective effect triggered by E2. In contrast, a MUL1 adenovirus did not prevent the E2 protection from cardiomyocyte hypertrophy. Further, in vivo analysis in a transgenic mouse model overexpressing MUL1 revealed that only young male mice overexpressed the protein. Consequently, they exhibited increased levels of the hypertrophic marker ANP, an elevated heart weight, and larger cardiomyocyte size. Therefore, our data demonstrate that 17-beta estradiol prevents cardiac myocyte hypertrophy by regulating MUL1.
Journal Article
Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle
by
Santos, Robson A.
,
Bader, Michael
,
Simon, Felipe
in
Angiotensin I - pharmacology
,
Animals
,
Atrophy
2020
Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy.
Journal Article
Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy
2021
Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.
Journal Article
Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases
by
Guajardo-Correa, Emanuel
,
Henríquez, Mauricio
,
Latorre, Mauricio
in
Atherosclerosis
,
cardiac hypertrophy
,
Cardiovascular disease
2022
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Journal Article
mTOR inhibition triggers mitochondrial fragmentation in cardiomyocytes through proteosome-dependent prohibitin degradation and OPA-1 cleavage
2025
Introduction
Cardiac mitochondrial function is intricately regulated by various processes, ultimately impacting metabolic performance. Additionally, protein turnover is crucial for sustained metabolic homeostasis in cardiomyocytes.
Objective
Here, we studied the role of mTOR in OPA-1 cleavage and its consequent effects on mitochondrial dynamics and energetics in cardiomyocytes.
Results
Cultured rat cardiomyocytes treated with rapamycin for 6–24 h showed a significant reduction in phosphorylation of p70S6K, indicative of sustained inhibition of mTOR. Structural and functional analysis revealed increased mitochondrial fragmentation and impaired bioenergetics characterized by decreases in ROS production, oxygen consumption, and cellular ATP. Depletion of either the mitochondrial protease OMA1 or the mTOR regulator TSC2 by siRNA, coupled with an inducible, cardiomyocyte-specific knockout of mTOR in vivo, suggested that inhibition of mTOR promotes mitochondrial fragmentation through a mechanism involving OMA1 processing of OPA-1. Under homeostatic conditions, OMA1 activity is kept under check through an interaction with microdomains in the inner mitochondrial membrane that requires prohibitin proteins (PHB). Loss of these microdomains releases OMA1 to cleave its substrates. We found that rapamycin both increased ubiquitination of PHB1 and decreased its abundance, suggesting proteasomal degradation. Consistent with this, the proteasome inhibitor MG-132 maintained OPA-1 content in rapamycin-treated cardiomyocytes. Using pharmacological activation and inhibition of AMPK our data supports the hypothesis that this mTOR-PHB1-OMA-OPA-1 pathway impacts mitochondrial morphology under stress conditions, where it mediates dynamic changes in metabolic status.
Conclusions
These data suggest that mTOR inhibition disrupts mitochondrial integrity in cardiomyocytes by promoting the degradation of prohibitins and OPA-1, leading to mitochondrial fragmentation and metabolic dysfunction, particularly under conditions of metabolic stress.
Journal Article
Angiotensin II-Regulated Autophagy Is Required for Vascular Smooth Muscle Cell Hypertrophy
by
Mondaca-Ruff, David
,
Lavandero, Sergio
,
García, Lorena
in
Angiotensin AT1 receptors
,
Angiotensin II
,
AT1R
2019
Hypertension is a disease associated to increased plasma levels of angiotensin II (Ang II). Ang II can regulate proliferation, migration, ROS production and hypertrophy of vascular smooth muscle cells (VSMCs). However, the mechanisms by which Ang II can affect VSMCs remain to be fully elucidated. In this context, autophagy, a process involved in self-digestion of proteins and organelles, has been described to regulate vascular remodeling. Therefore, we sought to investigate if Ang II regulates VSMC hypertrophy through an autophagy-dependent mechanism. To test this, we stimulated A7r5 cell line and primary rat aortic smooth muscle cells with Ang II 100 nM and measured autophagic markers at 24 h by Western blot. Autophagosomes were quantified by visualizing fluorescently labeled LC3 using confocal microscopy. The results showed that treatment with Ang II increases Beclin-1, Vps34, Atg-12-Atg5, Atg4 and Atg7 protein levels, Beclin-1 phosphorylation, as well as the number of autophagic vesicles, suggesting that this peptide induces autophagy by activating phagophore initiation and elongation. These findings were confirmed by the assessment of autophagic flux by co-administering Ang II together with chloroquine (30 μM). Pharmacological antagonism of the angiotensin type 1 receptor (AT1R) with losartan and RhoA/Rho Kinase inhibition prevented Ang II-induced autophagy. Moreover, Ang II-induced A7r5 hypertrophy, evaluated by α-SMA expression and cell size, was prevented upon autophagy inhibition. Taking together, our results suggest that the induction of autophagy by an AT1R/RhoA/Rho Kinase-dependent mechanism contributes to Ang II-induced hypertrophy in VSMC.
Journal Article