Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
464
result(s) for
"Chu, Paul K."
Sort by:
A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection
2018
Although polymerase chain reaction (PCR) is the most widely used method for DNA amplification, the requirement of thermocycling limits its non-laboratory applications. Isothermal DNA amplification techniques are hence valuable for on-site diagnostic applications in place of traditional PCR. Here we describe a true isothermal approach for amplifying and detecting double-stranded DNA based on a CRISPR–Cas9-triggered nicking endonuclease-mediated Strand Displacement Amplification method (namely CRISDA). CRISDA takes advantage of the high sensitivity/specificity and unique conformational rearrangements of CRISPR effectors in recognizing the target DNA. In combination with a peptide nucleic acid (PNA) invasion-mediated endpoint measurement, the method exhibits attomolar sensitivity and single-nucleotide specificity in detection of various DNA targets under a complex sample background. Additionally, by integrating the technique with a Cas9-mediated target enrichment approach, CRISDA exhibits sub-attomolar sensitivity. In summary, CRISDA is a powerful isothermal tool for ultrasensitive and specific detection of nucleic acids in point-of-care diagnostics and field analyses.
Isothermal DNA amplification techniques are useful for diagnostic applications in place of traditional PCR. Here the authors describe CRISDA, which combines CRISPR–Cas9 with strand displacement amplification and exhibits attomolar sensitivity and single-nucleotide specificity in DNA detection.
Journal Article
Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
2019
Although silicon is a promising anode material for lithium-ion batteries, scalable synthesis of silicon anodes with good cyclability and low electrode swelling remains a significant challenge. Herein, we report a scalable top-down technique to produce ant-nest-like porous silicon from magnesium-silicon alloy. The ant-nest-like porous silicon comprising three-dimensional interconnected silicon nanoligaments and bicontinuous nanopores can prevent pulverization and accommodate volume expansion during cycling resulting in negligible particle-level outward expansion. The carbon-coated porous silicon anode delivers a high capacity of 1,271 mAh g
−1
at 2,100 mA g
−1
with 90% capacity retention after 1,000 cycles and has a low electrode swelling of 17.8% at a high areal capacity of 5.1 mAh cm
−2
. The full cell with the prelithiated silicon anode and Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
cathode boasts a high energy density of 502 Wh Kg
−1
and 84% capacity retention after 400 cycles. This work provides insights into the rational design of alloy anodes for high-energy batteries.
Silicon is a promising anode material for lithium-ion batteries but experiences large volume changes during cycling. Here the authors report a scalable method to synthesize porous ant-nest-like silicons. The unique structure of this anode solves the swelling problem and enables impressive performance.
Journal Article
Evading strength-corrosion tradeoff in Mg alloys via dense ultrafine twins
2021
Conventional ultrafine-grains can generate high strength in Mg alloys, but significant tradeoff of corrosion resistance due to inclusion of a large number of non-equilibrium grain boundaries. Herein, an ultrafine-grain structure consisting of dense ultrafine twins is prepared, yielding a high strength up to 469 MPa and decreasing the corrosion rate by one order of magnitude. Generally, the formation of dense ultrafine twins in Mg alloys is rather difficult, but a carefully designed multi-directional compression treatment effectively stimulates twinning nucleation within twins and refines grain size down to 300 nm after 12-passes compressions. Grain-refinement by low-energy twins not only circumvents the detrimental effects of non-equilibrium grain boundaries on corrosion resistance, but also alters both the morphology and distribution of precipitates. Consequently, micro-galvanic corrosion tendency decreases, and severe localized corrosion is suppressed completely. This technique has a high commercial viability as it can be readily implemented in industrial production.
Conventional ultrafine grains can generate high-strength Mg alloys, but non-equilibrium grain boundaries deteriorates their corrosion resistance. Here, the authors present ultrafine grained Mg alloys with dense twins that display high strength and reduced corrosion rate by one order of magnitude.
Journal Article
Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy
2016
Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The
in vitro
and
in vivo
experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential.
Black phosphorus is a biodegradable 2D material that has attracted growing interest in biomedicine. Here, the authors carry out
in vitro
and
in vivo
experiments to demonstrate that nanospheres loaded with black-phosphorus quantum dots perform as promising phothermal cancer therapy agents.
Journal Article
An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging
Electrical interactions between bacteria and the environment are delicate and essential. In this study, an external electrical current is applied to capacitive titania nanotubes doped with carbon (TNT-C) to evaluate the effects on bacteria killing and the underlying mechanism is investigated. When TNT-C is charged, post-charging antibacterial effects proportional to the capacitance are observed. This capacitance-based antibacterial system works well with both direct and alternating current (DC, AC) and the higher discharging capacity in the positive DC (DC+) group leads to better antibacterial performance. Extracellular electron transfer observed during early contact contributes to the surface-dependent post-charging antibacterial process. Physiologically, the electrical interaction deforms the bacteria morphology and elevates the intracellular reactive oxygen species level without impairing the growth of osteoblasts. Our finding spurs the design of light-independent antibacterial materials and provides insights into the use of electricity to modify biomaterials to complement other bacteria killing measures such as light irradiation.
Bacteria are known to be sensitive to electrical interactions with the environment. Here, the authors report on a study into how the antibacterial properties of carbon-doped titania nanotubes are affected by capacitance after charging with direct and alternating currents.
Journal Article
Black‐Phosphorus‐Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer
2018
Photothermal therapy (PTT) is a fledgling therapeutic strategy for cancer treatment with minimal invasiveness but clinical adoption has been stifled by concerns such as insufficient biodegradability of the PTT agents and lack of an efficient delivery system. Here, black phosphorus (BP) nanosheets are incorporated with a thermosensitive hydrogel [poly(d,l‐lactide)‐poly(ethylene glycol)‐poly(d,l‐lactide) (PDLLA‐PEG‐PDLLA: PLEL)] to produce a new PTT system for postoperative treatment of cancer. The BP@PLEL hydrogel exhibits excellent near infrared (NIR) photothermal performance and a rapid NIR‐induced sol–gel transition as well as good biodegradability and biocompatibility in vitro and in vivo. Based on these merits, an in vivo PTT postoperative treatment strategy is established. Under NIR irradiation, the sprayed BP@PLEL hydrogel enables rapid gelation forming a gelled membrane on wounds and offers high PTT efficacy to eliminate residual tumor tissues after tumor removal surgery. Furthermore, the good photothermal antibacterial performance prevents infection and this efficient and biodegradable PTT system is very promising in postoperative treatment of cancer. A sprayable and biodegradable photothermal therapy (PTT) system composed of a thermosensitive hydrogel incorporated with black phosphorus (BP) nanosheets is presented for post‐surgical treatment of cancer. The obtained hydrogel enables rapid gelation and offers high PTT efficacy to eliminate residual tumor after surgery. This efficient and biodegradable PTT system is very promising in the postoperative treatment of cancer.
Journal Article
Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators
2022
Flexible triboelectric nanogenerators (TENGs) have attracted increasing interest since their advent in 2012. In comparison with other flexible electrodes, hydrogels possess transparency, stretchability, biocompatibility, and tunable ionic conductivity, which together provide great potential as current collectors in TENGs for wearable applications. The development of hydrogel‐based TENGs (H‐TENGs) is currently a burgeoning field but research efforts have lagged behind those of other common flexible TENGs. In order to spur research and development of this important area, a comprehensive review that summarizes recent advances and challenges of H‐TENGs will be very useful to researchers and engineers in this emerging field. Herein, the advantages and types of hydrogels as soft ionic conductors in TENGs are presented, followed by detailed descriptions of the advanced functions, enhanced output performance, as well as flexible and wearable applications of H‐TENGs. Finally, the challenges and prospects of H‐TENGs are discussed. Owing to its stretchability, biocompatibility, and tunable ionic conductivity, hydrogels have gained increasing attention as current collectors in triboelectric nanogenerators (TENGs). However, a comprehensive review concerning the development of hydrogel‐based TENGs (H‐TENGs) is still lacking. This paper summarizes the recent progress and prospect of H‐TENGs for flexible and wearable applications. Challenges and opportunities of this exciting area are highlighted.
Journal Article
Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials
2022
Metal–semiconductor junctions are essential components in electronic and optoelectronic devices. With two-dimensional semiconductors, conventional metal deposition via ion bombardment results in chemical disorder and Fermi-level pinning. Transfer printing techniques—in which metal electrodes are predeposited and transferred to create van der Waals junctions—have thus been developed, but the predeposition of metal electrodes creates chemical bonds on the substrate, which makes subsequent transfer difficult. Here we report a graphene-assisted metal transfer printing process that can be used to form van der Waals contacts between two-dimensional materials and three-dimensional metal electrodes. We show that arrays of metal electrodes with both weak (copper, silver and gold) and strong (platinum, titanium and nickel) adhesion strengths can be delaminated from a four-inch graphene wafer due to its weak van der Waals force and absence of dangling bonds, and transfer printed onto different substrates (graphene, molybdenum disulfide and silicon dioxide). We use this approach to create molybdenum disulfide field-effect transistors with different printed metal electrodes, allowing the Schottky barrier height to be tuned and ohmic and Schottky contacts to be formed. We also demonstrate the batch production of molybdenum disulfide transistor arrays with uniform electrical characteristics.
A variety of metal electrodes can be deposited on a graphene substrate, delaminated and transferred onto two-dimensional semiconductors to form high-quality metal–semiconductor interfaces.
Journal Article
Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors
2018
Lateral graphene p–n junctions are important since they constitute the core components in a variety of electronic/photonic systems. However, formation of lateral graphene p–n junctions with a controllable doping levels is still a great challenge due to the monolayer feature of graphene. Herein, by performing selective ion implantation and in situ growth by dynamic chemical vapor deposition, direct formation of seamless lateral graphene p–n junctions with spatial control and tunable doping is demonstrated. Uniform lattice substitution with heteroatoms is achieved in both the boron-doped and nitrogen-doped regions and photoelectrical assessment reveals that the seamless lateral p–n junctions exhibit a distinct photocurrent response under ambient conditions. As ion implantation is a standard technique in microelectronics, our study suggests a simple and effective strategy for mass production of graphene p–n junctions with batch capability and spatial controllability, which can be readily integrated into the production of graphene-based electronics and photonics.
Fabricating lateral graphene p–n junctions with controlled doping levels is instrumental to realize ultrafast and efficient optoelectronic devices. Here, the authors report a seamless graphene based photodetector doped by selective ion implantation and in-situ chemical vapour deposition.
Journal Article
Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices
2024
Since the initial discovery of Ti3C2 a decade ago, there has been a significant surge of interest in 2D MXenes and MXene‐based composites. This can be attributed to the remarkable intrinsic properties exhibited by MXenes, including metallic conductivity, abundant functional groups, unique layered microstructure, and the ability to control interlayer spacing. These properties contribute to the exceptional electrical and mechanical performance of MXenes, rendering them highly suitable for implementation as candidate materials in flexible and wearable energy storage devices. Recently, a substantial number of novel research has been dedicated to exploring MXene‐based flexible materials with diverse functionalities and specifically designed structures, aiming to enhance the efficiency of energy storage systems. In this review, a comprehensive overview of the synthesis and fabrication strategies employed in the development of these diverse MXene‐based materials is provided. Furthermore, an in‐depth analysis of the energy storage applications exhibited by these innovative flexible materials, encompassing supercapacitors, Li‐ion batteries, Li–S batteries, and other potential avenues, is conducted. In addition to presenting the current state of the field, the challenges encountered in the implementation of MXene‐based flexible materials are also highlighted and insights are provided into future research directions and prospects. This paper delves into MXene materials' synthesis methods and their versatile applications in energy storage, spanning supercapacitors, Li‐ion, and Li–S batteries, discovering the current landscape, hurdles, and exciting research opportunities in this dynamic field.
Journal Article