Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Chu, Xiangcheng"
Sort by:
Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface
Eye tracking provides valuable insight for analyzing visual attention and underlying thinking progress through the observation of eye movements. Here, a transparent, flexible and ultra-persistent electrostatic sensing interface is proposed for realizing active eye tracking (AET) system based on the electrostatic induction effect. Through a triple-layer structure combined with a dielectric bilayer and a rough-surface Ag nanowire (Ag NW) electrode layer, the inherent capacitance and interfacial trapping density of the electrostatic interface has been strongly enhanced, contributing to an unprecedented charge storage capability. The electrostatic charge density of the interface reached 1671.10 μC·m −2 with a charge-keeping rate of 96.91% after 1000 non-contact operation cycles, which can finally realize oculogyric detection with an angular resolution of 5°. Thus, the AET system enables real-time decoding eye movements for customer preference recording and eye-controlled human-computer interaction, supporting its limitless potentiality in commercial purpose, virtual reality, human computer interactions and medical monitoring. Eye tracking systems are crucial for eye health-monitoring and human-machine engineering. Here, Shi et. al. report a transparent and flexible active eye tracking system based on an electrostatic induction effect, enabling visual preference analysis and eye-controlled human-computer interaction.
An Eight-Zonal Piezoelectric Tube-Type Threaded Ultrasonic Motor Based on Second-Order Bending Mode
In order to reduce the driving voltage and gain better output characteristics of piezoelectric actuators, an eight-zonal piezoelectric tube-type threaded ultrasonic motor based on two second-order bending modes was analyzed using the method of finite element analysis (FEA), and a prototype was fabricated and experimentally studied in this research. This piezoelectric motor was designed to be excited by four electrical sources applied simultaneously to four groups of electrodes on the customized lead zirconate titanate (PZT) tubular stator (inside diameter 5.35 mm, outside diameter 6.35 mm, length 30 mm), with ±90° phase shifts between adjacent electrodes. Experimental results show that the threaded motor could output a stall force (stall force means the output pull or thrust force when the linear speed is set to be zero) of about 5.0 N and a linear velocity of 4.9 mm/s with no load at the driving voltage of 40 Vpp (Vpp means the peak-to-peak value of the voltage volts). This piezoelectric motor with a compact structure and screw drive mechanism shows relatively fine velocity controllability and has huge superiority in micro-positioning systems.
Analysis and Experimental Research of a Multilayer Linear Piezoelectric Actuator
To lower the operating voltage and improve the output performance of piezoelectric actuators, a multilayer monolithic ultrasonic linear piezoelectric actuator was analyzed with the method of finite element analysis (FEA), and a prototype was fabricated and experimentally researched in this study. Experimental results show that the actuator with a multilayer piezoelectric lead zirconate titanate (PZT) structure (size: 30 × 7.5 × 3 mm3, mass: 5.49 g) can output a pulling force of 5.0 N maximum and a linear velocity up to 270 mm/s at the voltage of 100 Vpp (Vpp means the peak-to-peak value of the voltage volts), showing a relatively good velocity controllability at the same time. The temperature rise characteristic of the actuator at various voltages was studied. The results indicate that: the temperature of this actuator rises rapidly but tends to saturate at some value; applying an offsetting voltage or decreasing the amplitude of the voltage would reduce the heat production.
Temperature-Dependent Phase Transition in Orthorhombic 011c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal
Relaxor [011]c PMN-0.35PT single crystal phase transition characteristics are investigated through various methods including variable temperature dielectric properties, X-ray diffraction, bipolar ferroelectric hysteresis loops (P-E) and electric-field-induced strain (S-E) hysteresis loops measurements. The results reveal that two phase transitions exist within the range from room temperature to 250 °C: orthorhombic (O)-tetragonal (T)-cubic (C). The O-to-T and T-to-C phase transition temperatures have been identified as 84 °C and 152 °C, respectively. Diffuseness degree of the T-to-C phase transition for the unpoled single crystal has been calculated to be 1.56, implying an intermediate state between normal and relaxor ferroelectrics. Temperature-dependent remanent polarization (Pr), coercive field (Ec), saturation polarization (Ps), hysteresis loop squareness (Rsq), and longitudinal piezoelectric constant (d* 33) are also explored to learn the details of the phase transitions. Variable temperature unipolar Suni-E hysteresis loops avail additional evidence for the microstructure change in the as-measured single crystal.
Morphology evolution, growth mechanism and optical properties of AlN nanostructures
In the present paper, we prepared various kinds of aluminium nitride (AlN) nanostructures utilizing chemical vapor deposition method at atmospheric pressure. Different nanostructures including flower, rod and film were obtained on bare silicon substrates by controlling the growth temperature between 650 and 800 °C. The formation mechanism of these nanostructures is related to vapor–solid process and Ehrlich–Schwoebel barrier. The crystalline phase and morphologies of the as-prepared AlN samples are investigated systematically. Their microstructures are observed by the scanning electron microscope. The X-ray diffraction results demonstrate that the AlN samples exhibit pure phase and grow preferentially along the c -axis. The Raman examination shows there is a strong stress at the interface between the AlN nanostructures and the silicon substrate. The photoluminescence properties indicate that AlN nanostructures possess a broad luminescence band, which can be divided into two subbands by Gaussian fitting, and they are ascribed to nitrogen vacancy as well as the oxygen impurity.
Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems
This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.
A Review of Flexible Acceleration Sensors Based on Piezoelectric Materials: Performance Characterization, Parametric Analysis, Frontier Technologies, and Applications
Acceleration sensors are tools for detecting acceleration and serve purposes like fault monitoring and behavior recognition. It is extensively employed in a variety of industries, including aerospace, artificial intelligence, biology, and many more. Among these, one of the major research hotspots and challenges is the development of low-energy, self-powered, miniature, mass-produced sensors. Due to its capacity to perceive human behavior and identify errors, the flexible acceleration sensor offers a distinct advantage in the use of flexible and miniaturized sensing systems. This review analyzes the current state of piezoelectric flexible acceleration sensors’ applications in the areas of sensitive materials, processing technology, and device structure and briefly summarizes the fundamental properties of these sensors. Additionally, it ends with a prognosis for the future growth of flexible piezoelectric acceleration sensors.
Influence of input signal on injection performance for needle driven piezoelectric micro-jet device
Due to the fast response, high precision and high working frequency, needle driven piezoelectric micro-jet devices have been applied in various industrial fields. The injection performance is important for the applications. The jetting velocity of the micro-droplets has a great influence on the ligament length and satellites. In this paper, the Fluent stimulation model of dynamic mesh motion has been established to simulate the jetting process. Meanwhile, the dependences of volume and jetting velocity of micro-droplets on input signal, including voltage, falling time, and fluid pressure, have been studied. The results show that the jetting velocity of micro-droplets can be changed and the volume is invariant by adjusting falling time, which can be used to guide the control of the needle driven piezoelectric micro-jet devices. Furthermore, the experimental system has been designed and the experiments show that the average minimum jetting velocity is about 0.724 m/s. The ligament length increases almost linearly with jetting velocity of the micro-droplets. And the optimal jetting velocity is less than 2.745 m/s, which cannot generate satellites.
Ultrasonic-assisted solution combustion synthesis of porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance
Solution combustion synthesis (SCS) is an effective and rapid method for synthesizing nanocrystalline materials. However, the control over size, morphology, and microstructure are rather limited in SCS. Here, we develop a novel ultrasonic-assisted solution combustion route to synthesize the porous and nano-sized Na 3 V 2 (PO 4 ) 3 /C composites, and reveal the effects of ultrasound on the structural evolution of NVP/C. Due to the cavitation effects generated from ultrasonic irradiation, the ultrasonic-assisted SCS can produce honeycomb precursor, which can be further transformed into porous Na 3 V 2 (PO 4 ) 3 /C with reticular and hollow structures after thermal treatment. When used as cathode material for Na-ion batteries, the porous Na 3 V 2 (PO 4 ) 3 /C delivers an initial discharge capacity of 118 mAh g −1 at 0.1 C and an initial coulombic efficiency of 85%. It can retain 93.8% of the initial capacity after 120 cycles at 0.2 C. The results demonstrate that ultrasonic-assisted SCS can be a new strategy to design crystalline nanomaterials with tunable microstructures. Graphical abstract Porous and nano-sized Na 3 V 2 (PO 4 ) 3 /C composites with reticular and hollow structures are synthesized by an ultrasonic-assisted solution combustion route due to the cavitation effects, and exhibit excellent electrochemical performance as cathode in sodium ion battery.
Multilayer piezoelectric ceramic transformer with low temperature sintering
The low-fired high performance piezoelectric ceramics used for multilayer piezoelectric transformer were investigated. Based on the transient liquid phase sintering mechanism, by doping suitable eutectic additives and optimizing processing, the sintering temperature of the quaternary system piezoelectric ceramics with high piezoelectric properties could be lower to about 960–1000°C. The low-temperature sintering multilayer piezoelectric transformer (MPT) has been developed. Some characteristics of MPT were systemically studied. The measurements include the frequency response of input impedance, frequency response of phase difference between input voltage and current, frequency shifting with load, input impedance changing with load, phase difference between input voltage and current shifting with load, and phase difference between input voltage and vibration velocity. The vibration modes and resonance characters of MPT were measured by a Laser Doppler Scanning Vibrometer. Several kinds of MPT with high voltage step-up ratio, high power density, high transfer efficiency and low cost have been industrially produced and commercialized. It reveals a broad application prospect for back-light power of liquid crystal display and piezo-ionizer etc.