Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Clapisson, Gilles"
Sort by:
Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis
Major advances have been achieved in the characterization of early breast cancer (eBC) genomic profiles. Metastatic breast cancer (mBC) is associated with poor outcomes, yet limited information is available on the genomic profile of this disease. This study aims to decipher mutational profiles of mBC using next-generation sequencing. Whole-exome sequencing was performed on 216 tumor-blood pairs from mBC patients who underwent a biopsy in the context of the SAFIR01, SAFIR02, SHIVA, or Molecular Screening for Cancer Treatment Optimization (MOSCATO) prospective trials. Mutational profiles from 772 primary breast tumors from The Cancer Genome Atlas (TCGA) were used as a reference for comparing primary and mBC mutational profiles. Twelve genes (TP53, PIK3CA, GATA3, ESR1, MAP3K1, CDH1, AKT1, MAP2K4, RB1, PTEN, CBFB, and CDKN2A) were identified as significantly mutated in mBC (false discovery rate [FDR] < 0.1). Eight genes (ESR1, FSIP2, FRAS1, OSBPL3, EDC4, PALB2, IGFN1, and AGRN) were more frequently mutated in mBC as compared to eBC (FDR < 0.01). ESR1 was identified both as a driver and as a metastatic gene (n = 22, odds ratio = 29, 95% CI [9-155], p = 1.2e-12) and also presented with focal amplification (n = 9) for a total of 31 mBCs with either ESR1 mutation or amplification, including 27 hormone receptor positive (HR+) and HER2 negative (HER2-) mBCs (19%). HR+/HER2- mBC presented a high prevalence of mutations on genes located on the mechanistic target of rapamycin (mTOR) pathway (TSC1 and TSC2) as compared to HR+/HER2- eBC (respectively 6% and 0.7%, p = 0.0004). Other actionable genes were more frequently mutated in HR+ mBC, including ERBB4 (n = 8), NOTCH3 (n = 7), and ALK (n = 7). Analysis of mutational signatures revealed a significant increase in APOBEC-mediated mutagenesis in HR+/HER2- metastatic tumors as compared to primary TCGA samples (p < 2e-16). The main limitations of this study include the absence of bone metastases and the size of the cohort, which might not have allowed the identification of rare mutations and their effect on survival. This work reports the results of the analysis of the first large-scale study on mutation profiles of mBC. This study revealed genomic alterations and mutational signatures involved in the resistance to therapies, including actionable mutations.
A first-in-human study investigating biodistribution, safety and recommended dose of a new radiolabeled MAb targeting FZD10 in metastatic synovial sarcoma patients
Background Synovial Sarcomas (SS) are rare tumors occurring predominantly in adolescent and young adults with a dismal prognosis in advanced phases. We report a first-in-human phase I of monoclonal antibody (OTSA-101) targeting FZD10 , overexpressed in most SS but not present in normal tissues, labelled with radioisotopes and used as a molecular vehicle to specifically deliver radiation to FZD10 expressing SS lesions. Methods Patients with progressive advanced SS were included. In the first step of this trial, OTSA-101 in vivo bio-distribution and lesions uptake were evaluated by repeated whole body planar and SPECT-CT scintigraphies from H1 till H144 after IV injection of 187 MBq of 111 In-OTSA-101. A 2D dosimetry study also evaluated the liver absorbed dose when using 90 Y-OTSA-101. In the second step, those patients with significant tumor uptake were randomized between 370 MBq (Arm A) and 1110 MBq (Arm B) of 90 Y-OTSA-101 for radionuclide therapy. Results From January 2012 to June 2015, 20 pts. (median age 43 years [21–67]) with advanced SS were enrolled. Even though 111 In-OTSA-101 liver uptake appeared to be intense, estimated absorbed liver dose was less than 20 Gy for each patient. Tracer intensity was greater than mediastinum in 10 patients consistent with sufficient tumor uptake to proceed to treatment with 90 Y-OTSA-101: 8 were randomized (Arm A: 3 patients and Arm B: 5 patients) and 2 were not randomized due to worsening PS. The most common Grade ≥ 3 AEs were reversible hematological disorders, which were more frequent in Arm B. No objective response was observed. Best response was stable disease in 3/8 patients lasting up to 21 weeks for 1 patient. Conclusions Radioimmunotherapy targeting FZD10 is feasible in SS patients as all patients presented at least one lesion with 111 In-OTSA-101 uptake. Tumor uptake was heterogeneous but sufficient to select 50% of pts. for 90 Y-OTSA-101 treatment. The recommended activity for further clinical investigations is 1110 MBq of 90 Y-OTSA-101. However, because of hematological toxicity, less energetic particle emitter radioisopotes such as Lutetium 177 may be a better option to wider the therapeutic index. Trial registration The study was registered on the NCT01469975 website with a registration code NCT01469975 on November the third, 2011.
Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis
Major advances have been achieved in the characterization of early breast cancer (eBC) genomic profiles. Metastatic breast cancer (mBC) is associated with poor outcomes, yet limited information is available on the genomic profile of this disease. This study aims to decipher mutational profiles of mBC using next-generation sequencing. Whole-exome sequencing was performed on 216 tumor-blood pairs from mBC patients who underwent a biopsy in the context of the SAFIR01, SAFIR02, SHIVA, or Molecular Screening for Cancer Treatment Optimization (MOSCATO) prospective trials. Mutational profiles from 772 primary breast tumors from The Cancer Genome Atlas (TCGA) were used as a reference for comparing primary and mBC mutational profiles. Twelve genes (TP53, PIK3CA, GATA3, ESR1, MAP3K1, CDH1, AKT1, MAP2K4, RB1, PTEN, CBFB, and CDKN2A) were identified as significantly mutated in mBC (false discovery rate [FDR] < 0.1). Eight genes (ESR1, FSIP2, FRAS1, OSBPL3, EDC4, PALB2, IGFN1, and AGRN) were more frequently mutated in mBC as compared to eBC (FDR < 0.01). ESR1 was identified both as a driver and as a metastatic gene (n = 22, odds ratio = 29, 95% CI [9-155], p = 1.2e-12) and also presented with focal amplification (n = 9) for a total of 31 mBCs with either ESR1 mutation or amplification, including 27 hormone receptor positive (HR+) and HER2 negative (HER2-) mBCs (19%). HR+/HER2- mBC presented a high prevalence of mutations on genes located on the mechanistic target of rapamycin (mTOR) pathway (TSC1 and TSC2) as compared to HR+/HER2- eBC (respectively 6% and 0.7%, p = 0.0004). Other actionable genes were more frequently mutated in HR+ mBC, including ERBB4 (n = 8), NOTCH3 (n = 7), and ALK (n = 7). Analysis of mutational signatures revealed a significant increase in APOBEC-mediated mutagenesis in HR+/HER2- metastatic tumors as compared to primary TCGA samples (p < 2e-16). The main limitations of this study include the absence of bone metastases and the size of the cohort, which might not have allowed the identification of rare mutations and their effect on survival. This work reports the results of the analysis of the first large-scale study on mutation profiles of mBC. This study revealed genomic alterations and mutational signatures involved in the resistance to therapies, including actionable mutations.