Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
287 result(s) for "Colby, C L"
Sort by:
Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS
We hypothesized that the suppression of uninvolved immunoglobulin in monoclonal gammopathy of undetermined significance (MGUS) as detected by suppression of the isotype-specific heavy and light chain (HLC-pair suppression) increases the risk of progression to malignancy. This approach required quantitation of individual heavy/light chains (for example, IgGλ in IgGκ MGUS patients). Of 1384 MGUS patients from Southeastern Minnesota seen at the Mayo Clinic from 1960 to 1994, baseline serum samples obtained within 30 days of diagnosis were available in 999 persons. We identified HLC-pair suppression in 27% of MGUS patient samples compared with 11% of patients with suppression of uninvolved IgG, IgA or IgM. HLC-pair suppression was a significant risk factor for progression (hazard ratio (HR), 2.3; 95% confidence interval (CI) 1.5–3.7; P <0.001). On multivariate analysis, HLC-pair suppression was an independent risk factor for progression to malignancy in combination with serum M-spike size, heavy chain isotype and free light chain ratio (HR, 1.8; 95% CI, 1.1–3.00; P =0.018). The finding that HLC-pair suppression predicts progression in MGUS and occurs several years before malignant transformation has implications for myeloma biology.
Space and attention in parietal cortex
The space around us is represented not once but many times in parietal cortex. These multiple representations encode locations and objects of interest in several egocentric reference frames. Stimulus representations are transformed from the coordinates of receptor surfaces, such as the retina or the cochlea, into the coordinates of effectors, such as the eye, head, or hand. The transformation is accomplished by dynamic updating of spatial representations in conjunction with voluntary movements. This direct sensory-to-motor coordinate transformation obviates the need for a single representation of space in environmental coordinates. In addition to representing object locations in motoric coordinates, parietal neurons exhibit strong modulation by attention. Both top-down and bottom-up mechanisms of attention contribute to the enhancement of visual responses. The saliance of a stimulus is the primary factor in determining the neural response to it. Although parietal neurons represent objects in motor coordinates, visual responses are independent of the intention to perform specific motor acts.
Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity
Delay-related sustained activity in the prefrontal cortex of primates, a neurological analogue of working memory, has been proposed to arise from synaptic interactions in local cortical circuits. The implication is that memories are coded by spatially localized foci of sustained activity. We investigate the mechanisms by which sustained foci are initiated, maintained, and extinguished by excitation in networks of Hodgkin-Huxley neurons coupled with biophysical spatially structured synaptic connections. For networks with a balance between excitation and inhibition, a localized transient stimulus robustly initiates a localized focus of activity. The activity is then maintained by recurrent excitatory AMPA-like synapses. We find that to maintain the focus, the firing must be asynchronous. Consequently, inducing transient synchrony through an excitatory stimulus extinguishes the sustained activity. Such a monosynaptic excitatory turn-off mechanism is compatible with the working memory being wiped clean by an efferent copy of the motor command. The activity that codes working memories may be structured so that the motor command is both the read-out and a direct clearing signal. We show examples of data that is compatible with our theory.
The Updating of the Representation of Visual Space in Parietal Cortex by Intended Eye Movements
Every eye movement produces a shift in the visual image on the retina. The receptive field, or retinal response area, of an individual visual neuron moves with the eyes so that after an eye movement it covers a new portion of visual space. For some parietal neurons, the location of the receptive field is shown to shift transiently before an eye movement. In addition, nearly all parietal neurons respond when an eye movement brings the site of a previously flashed stimulus into the receptive field. Parietal cortex both anticipates the retinal consequences of eye movements and updates the retinal coordinates of remembered stimuli to generate a continuously accurate representation of visual space.
Stimulus–Response Incompatibility Activates Cortex Proximate to Three Eye Fields
We used functional magnetic resonance imaging (fMRI) to investigate cortical activation during the performance of three oculomotor tasks that impose increasing levels of cognitive demand. (1) In a visually guided saccade (VGS) task, subjects made saccades to flashed targets. (2) In a compatible task, subjects made leftward and rightward saccades in response to foveal presentation of the uppercase words “LEFT” or “RIGHT.” (3) In a mixed task, subjects made rightward saccades in response to the lowercase word “left” and leftward saccades in response to the lowercase word “right” on incompatible trials (60%). The remaining 40% of trials required compatible responses to uppercase words. The VGS and compatible tasks, when compared to fixation, activated the three cortical eye fields: the supplementary eye field (SEF), the frontal eye field (FEF), and the parietal eye field (PEF). The mixed task, when compared to the compatible task, activated three additional cortical regions proximate to the three eye fields: (1) rostral to the SEF in medial frontal cortex; (2) rostral to the FEF in dorsolateral prefrontal cortex (DLPFC); (3) rostral and lateral to the PEF in posterior parietal cortex. These areas may contribute to the suppression of prepotent responses and in holding novel visuomotor associations in working memory.
Single-nucleotide polymorphism rs1052501 associated with monoclonal gammopathy of undetermined significance and multiple myeloma
Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant precursor to multiple myeloma (MM). Though several genetic variants have been identified for MM, none have been identified for MGUS. Recently, Broderick et al. conducted a GWAS of MM and identified three novel loci at 3p22.1 (rs1052501), 7p15.3 (rs4487645) and 2p23.3 (rs6746082) associated with MM risk. We examined the association of these variants with MGUS in a clinic-based case-control study of 391 MGUS cases and 365 controls. We also attempted to replicate the reported association with MM (243 MM cases, 365 controls). We found rs1052501 associated with increased risk of both MGUS (OR=1.32; 95% CI, 1.02 to 1.72; p=0.04) and MM (OR=1.39; 95% CI, 1.04, 1.86; p=0.03). However, there were no associations with the other two loci, rs6746082 and rs4487645, for either MGUS or MM. We identified one genetic variant that may exert its influence on MM through its association with MGUS.
Updating of the Visual Representation in Monkey Striate and Extrastriate Cortex during Saccades
Neurons in the lateral intraparietal area, frontal eye field, and superior colliculus exhibit a pattern of activity known as remapping. When a salient visual stimulus is presented shortly before a saccade, the representation of that stimulus is updated, or remapped, at the time of the eye movement. This updating is presumably based on a corollary discharge of the eye movement command. To investigate whether visual areas also exhibit remapping, we recorded from single neurons in extrastriate and striate cortex while monkeys performed a saccade task. Around the time of the saccade, a visual stimulus was flashed either at the location occupied by the neuron's receptive field (RF) before the saccade (old RF) or at the location occupied by it after the saccade (new RF). More than half (52%) of V3A neurons responded to a stimulus flashed in the new RF even though the stimulus had already disappeared before the saccade. These neurons responded to a trace of the flashed stimulus brought into the RF by the saccade. In 16% of V3A neurons, remapped activity began even before saccade onset. Remapping also was observed at earlier stages of the visual hierarchy, including in areas V3 and V2. At these earlier stages, the proportion of neurons that exhibited remapping decreased, and the latency of remapped activity increased relative to saccade onset. Remapping was very rare in striate cortex. These results indicate that extrastriate visual areas are involved in the process of remapping.
Demonstration of electron acceleration in a laser-driven dielectric microstructure
Acceleration of relativistic electrons in a dielectric laser accelerator at high electric field gradients is reported, setting the stage for the development of future multi-staged accelerators of this type. A new breed of particle accelerator Conventional particle accelerators, based on radio-frequency technology, are large-scale installations that are expensive to run. Micro-fabricated dielectric laser accelerators (DLAs) offer an attractive alternative, as they are able to support much larger accelerating fields than current accelerators, while being compact, economical and simple to manufacture using lithographic techniques. This paper presents the first experimental demonstration of a DLA capable of sustained, high-gradient (beyond 250 MeV m −1 ) acceleration of relativistic electrons. The results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems, which would enable compact table-top MeV–GeV-scale accelerators. Applications include security scanners and medical therapy, X-ray light sources for biological and materials research, and portable medical imaging devices. The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today’s accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently 1 , 2 , 3 , 4 , no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m −1 ) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10–30 MeV m −1 , and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m −1 (ref. 5 ). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV–GeV (10 6 –10 9  eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10 12  eV) scale.
Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection
Antiretroviral therapy during the earliest stage of acute HIV infection (Fiebig I) might minimize establishment of a latent HIV reservoir and thereby facilitate viremic control after analytical treatment interruption. We show that 8 participants, who initiated treatment during Fiebig I and were treated for a median of 2.8 years, all experienced rapid viral load rebound following analytical treatment interruption, indicating that additional strategies are required to control or eradicate HIV. Initiation of antiretroviral therapy in the first 2 weeks of HIV infection fails to prevent resurgence of virus after stopping treatment, indicating early establishment of a resilient viral reservoir.