Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
17
result(s) for
"Coll-Bonfill, Núria"
Sort by:
Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease
2018
Circulating endothelial microparticles (EMPs) and progenitor cells (PCs) are biological markers of endothelial function and endogenous repair capacity. The study was aimed to investigate whether COPD patients have an imbalance between EMPs to PCs compared to controls and to evaluate the effect of cigarette smoke on these circulating markers.
Circulating EMPs and PCs were determined by flow cytometry in 27 nonsmokers, 20 smokers and 61 COPD patients with moderate to severe airflow obstruction. We compared total EMPs (CD31+CD42b-), apoptotic if they co-expressed Annexin-V+ or activated if they co-expressed CD62E+, circulating PCs (CD34+CD133+CD45+) and the EMPs/PCs ratio between groups.
COPD patients presented increased levels of total and apoptotic circulating EMPs, and an increased EMPs/PCs ratio, compared with nonsmokers. Women had less circulating PCs than men through all groups and those with COPD showed lower levels of PCs than both control groups. In smokers, circulating EMPs and PCs did not differ from nonsmokers, being the EMPs/PCs ratio in an intermediate position between COPD and nonsmokers.
We conclude that COPD patients present an imbalance between endothelial damage and repair capacity that might explain the frequent concurrence of cardiovascular disorders. Factors related to the disease itself and gender, rather than cigarette smoking, may account for this imbalance.
Journal Article
Stimulation of Soluble Guanylate Cyclase Prevents Cigarette Smoke–induced Pulmonary Hypertension and Emphysema
by
Tura-Ceide, Olga
,
Peinado, Víctor I.
,
Schermuly, Ralph T.
in
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Animals
,
Apoptosis
2014
Chronic obstructive pulmonary disease (COPD) is a major cause of death worldwide. No therapy stopping progress of the disease is available.
To investigate the role of the soluble guanylate cyclase (sGC)-cGMP axis in development of lung emphysema and pulmonary hypertension (PH) and to test whether the sGC-cGMP axis is a treatment target for these conditions.
Investigations were performed in human lung tissue from patients with COPD, healthy donors, mice, and guinea pigs. Mice were exposed to cigarette smoke (CS) for 6 hours per day, 5 days per week for up to 6 months and treated with BAY 63-2521. Guinea pigs were exposed to CS from six cigarettes per day for 3 months, 5 days per week and treated with BAY 41-2272. Both BAY compounds are sGC stimulators. Gene and protein expression analysis were performed by quantitative real-time polymerase chain reaction and Western blotting. Lung compliance, hemodynamics, right ventricular heart mass alterations, and alveolar and vascular morphometry were performed, as well as inflammatory cell infiltrate assessment. In vitro assays of cell adhesion, proliferation, and apoptosis have been done.
The functionally essential sGC β1-subunit was down-regulated in patients with COPD and in CS-exposed mice. sGC stimulators prevented the development of PH and emphysema in the two different CS-exposed animal models. sGC stimulation prevented peroxynitrite-induced apoptosis of alveolar and endothelial cells, reduced CS-induced inflammatory cell infiltrate in lung parenchyma, and inhibited adhesion of CS-stimulated neutrophils.
The sGC-cGMP axis is perturbed by chronic exposure to CS. Treatment of COPD animal models with sGC stimulators can prevent CS-induced PH and emphysema.
Journal Article
Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype
2016
Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling.
Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries.
Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases.
Journal Article
Differentiation and Growth-Arrest-Related lncRNA (DAGAR): Initial Characterization in Human Smooth Muscle and Fibroblast Cells
by
Bruckmann, Astrid
,
Meister, Gunter
,
Musri, Melina M.
in
Airway management
,
Cell cycle
,
Cell Differentiation - genetics
2024
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or “differentiated” phenotype and a “proliferative-dedifferentiated” phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.
Journal Article
Correction: Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype
2016
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 1. (2016) Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype.
Journal Article
MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling
2018
Pulmonary vascular remodeling is an angiogenic-related process involving changes in smooth muscle cell (SMC) homeostasis, which is frequently observed in chronic obstructive pulmonary disease (COPD). MicroRNAs (miRNAs) are small, noncoding RNAs that regulate mRNA expression levels of many genes, leading to the manifestation of cell identity and specific cellular phenotypes. Here, we evaluate the miRNA expression profiles of pulmonary arteries (PAs) of patients with COPD and its relationship with the regulation of SMC phenotypic change. miRNA expression profiles from PAs of 12 patients with COPD, 9 smokers with normal lung function (SK), and 7 nonsmokers (NS) were analyzed using TaqMan Low-Density Arrays. In patients with COPD, expression levels of miR-98, miR-139-5p, miR-146b-5p, and miR-451 were upregulated, as compared with NS. In contrast, miR-197, miR-204, miR-485-3p, and miR-627 were downregulated. miRNA-197 expression correlated with both airflow obstruction and PA intimal enlargement. In an in vitro model of SMC differentiation, miR-197 expression was associated with an SMC contractile phenotype. miR-197 inhibition blocked the acquisition of contractile markers in SMCs and promoted a proliferative/migratory phenotype measured by both cell cycle analysis and wound-healing assay. Using luciferase assays, Western blot, and quantitative PCR, we confirmed that miR-197 targets the transcription factor E2F1. In PAs from patients with COPD, levels of E2F1 were increased as compared with NS. In PAs of patients with COPD, remodeling of the vessel wall is associated with downregulation of miR-197, which regulates SMC phenotype. The effect of miR-197 on PAs might be mediated, at least in part, by the key proproliferative factor, E2F1.
Journal Article
Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig
by
Tura-Ceide, Olga
,
Paul, Tanja
,
Blanco, Isabel
in
Abnormalities
,
Acetylcholine receptors (muscarinic)
,
Acetylcholine receptors (nicotinic)
2017
Background
Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs).
Methods
Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 10
6
BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile.
Results
CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner.
Conclusion
Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction.
Journal Article
Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease
by
Paul, Tanja
,
Tura-Ceide, Olga
,
de Jover, Lluís
in
Cardiovascular diseases
,
Causes of
,
Chronic obstructive lung disease
2018
Circulating endothelial microparticles (EMPs) and progenitor cells (PCs) are biological markers of endothelial function and endogenous repair capacity. The study was aimed to investigate whether COPD patients have an imbalance between EMPs to PCs compared to controls and to evaluate the effect of cigarette smoke on these circulating markers. Circulating EMPs and PCs were determined by flow cytometry in 27 nonsmokers, 20 smokers and 61 COPD patients with moderate to severe airflow obstruction. We compared total EMPs (CD31.sup.+ CD42b.sup.- ), apoptotic if they co-expressed Annexin-V.sup.+ or activated if they co-expressed CD62E.sup.+, circulating PCs (CD34.sup.+ CD133.sup.+ CD45.sup.+) and the EMPs/PCs ratio between groups. COPD patients presented increased levels of total and apoptotic circulating EMPs, and an increased EMPs/PCs ratio, compared with nonsmokers. Women had less circulating PCs than men through all groups and those with COPD showed lower levels of PCs than both control groups. In smokers, circulating EMPs and PCs did not differ from nonsmokers, being the EMPs/PCs ratio in an intermediate position between COPD and nonsmokers. We conclude that COPD patients present an imbalance between endothelial damage and repair capacity that might explain the frequent concurrence of cardiovascular disorders. Factors related to the disease itself and gender, rather than cigarette smoking, may account for this imbalance.
Journal Article
Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease
by
Paul, Tanja
,
Tura-Ceide, Olga
,
de Jover, Lluís
in
Cardiovascular diseases
,
Causes of
,
Chronic obstructive lung disease
2018
Circulating endothelial microparticles (EMPs) and progenitor cells (PCs) are biological markers of endothelial function and endogenous repair capacity. The study was aimed to investigate whether COPD patients have an imbalance between EMPs to PCs compared to controls and to evaluate the effect of cigarette smoke on these circulating markers. Circulating EMPs and PCs were determined by flow cytometry in 27 nonsmokers, 20 smokers and 61 COPD patients with moderate to severe airflow obstruction. We compared total EMPs (CD31.sup.+ CD42b.sup.- ), apoptotic if they co-expressed Annexin-V.sup.+ or activated if they co-expressed CD62E.sup.+, circulating PCs (CD34.sup.+ CD133.sup.+ CD45.sup.+) and the EMPs/PCs ratio between groups. COPD patients presented increased levels of total and apoptotic circulating EMPs, and an increased EMPs/PCs ratio, compared with nonsmokers. Women had less circulating PCs than men through all groups and those with COPD showed lower levels of PCs than both control groups. In smokers, circulating EMPs and PCs did not differ from nonsmokers, being the EMPs/PCs ratio in an intermediate position between COPD and nonsmokers. We conclude that COPD patients present an imbalance between endothelial damage and repair capacity that might explain the frequent concurrence of cardiovascular disorders. Factors related to the disease itself and gender, rather than cigarette smoking, may account for this imbalance.
Journal Article
Genomic instability and innate immune responses to self-DNA in progeria
2019
In the last decade, we have seen increasing evidence of the importance of structural nuclear proteins such as lamins in nuclear architecture and compartmentalization of genome function and in the maintenance of mechanical stability and genome integrity. With over 400 mutations identified in the LMNA gene (encoding for A-type lamins) associated with more than ten distinct degenerative disorders, the role of lamins as genome caretakers and the contribution of lamins dysfunction to disease are unarguable. However, the molecular mechanisms whereby lamins mutations cause pathologies remain less understood. Here, we review pathways and mechanisms recently identified as playing a role in the pathophysiology of laminopathies, with special emphasis in Hutchinson Gilford Progeria Syndrome (HGPS). This devastating incurable accelerated aging disease is caused by a silent mutation in the LMNA gene that generates a truncated lamin A protein “progerin” that exerts profound cellular toxicity and organismal decline. Patients usually die in their teens due to cardiovascular complications such as myocardial infarction or stroke. To date, there are no efficient therapies that ameliorate disease progression, stressing the need to understand molecularly disease mechanisms that can be targeted therapeutically. We will summarize data supporting that replication stress is a major cause of genomic instability in laminopathies, which contributes to the activation of innate immune responses to self-DNA that in turn accelerate the aging process.
Journal Article