Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44
result(s) for
"Coughlan, Lynda"
Sort by:
Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines
2020
Adenoviral vectors are a safe and potently immunogenic vaccine delivery platform. Non-replicating Ad vectors possess several attributes which make them attractive vaccines for infectious disease, including their capacity for high titer growth, ease of manipulation, safety, and immunogenicity in clinical studies, as well as their compatibility with clinical manufacturing and thermo-stabilization procedures. In general, Ad vectors are immunogenic vaccines, which elicit robust transgene antigen-specific cellular (namely CD8
T cells) and/or humoral immune responses. A large number of adenoviruses isolated from humans and non-human primates, which have low seroprevalence in humans, have been vectorized and tested as vaccines in animal models and humans. However, a distinct hierarchy of immunological potency has been identified between diverse Ad vectors, which unfortunately limits the potential use of many vectors which have otherwise desirable manufacturing characteristics. The precise mechanistic factors which underlie the profound disparities in immunogenicity are not clearly defined and are the subject of ongoing, detailed investigation. It has been suggested that a combination of factors contribute to the potent immunogenicity of particular Ad vectors, including the magnitude and duration of vaccine antigen expression following immunization. Furthermore, the excessive induction of Type I interferons by some Ad vectors has been suggested to impair transgene expression levels, dampening subsequent immune responses. Therefore, the induction of balanced, but not excessive stimulation of innate signaling is optimal. Entry factor binding or receptor usage of distinct Ad vectors can also affect their
tropism following administration by different routes. The abundance and accessibility of innate immune cells and/or antigen-presenting cells at the site of injection contributes to early innate immune responses to Ad vaccination, affecting the outcome of the adaptive immune response. Although a significant amount of information exists regarding the tropism determinants of the common human adenovirus type-5 vector, very little is known about the receptor usage and tropism of rare species or non-human Ad vectors. Increased understanding of how different facets of the host response to Ad vectors contribute to their immunological potency will be essential for the development of optimized and customized Ad vaccine platforms for specific diseases.
Journal Article
Introduction of Two Prolines and Removal of the Polybasic Cleavage Site Lead to Higher Efficacy of a Recombinant Spike-Based SARS-CoV-2 Vaccine in the Mouse Model
2021
A vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validate the choice of antigens that contain the PP mutations and suggest that deletion of the polybasic cleavage site may lead to a further-optimized design.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively unstable, a feature that might be enhanced by the presence of a polybasic cleavage site in SARS-CoV-2 spike. Exchange of K986 and V987 for prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus spike proteins. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin-converting enzyme 2 via adenovirus transduction. Variants tested include spike proteins with a deleted polybasic cleavage site, proline mutations, or a combination thereof, besides the wild-type protein. While all versions of the protein were able to induce neutralizing antibodies, only the antigen with both a deleted cleavage site and the K986P and V987P (PP) mutations completely protected from challenge in this mouse model.
IMPORTANCE
A vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validate the choice of antigens that contain the PP mutations and suggest that deletion of the polybasic cleavage site may lead to a further-optimized design.
Journal Article
Vaccination with SARS-CoV-2 variants of concern protects mice from challenge with wild-type virus
by
Coughlan, Lynda
,
Mühlemann, Barbara
,
Vigdorovich, Vladimir
in
Animals
,
Antibodies
,
Antibodies, Neutralizing - immunology
2021
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.
Journal Article
A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses
2021
Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.
Here the authors show that a Newcastle disease virus based COVID-19 vaccine expressing a stabilized spike protein induces protective immunity in small animal models and reduces replication of variants of concerns. This vaccine candidate can be produced by influenza virus vaccine manufactures around the world.
Journal Article
Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection
by
García-Sastre, Adolfo
,
Coughlan, Lynda
,
Gillespie, Virginia L.
in
A549 Cells
,
ACE2
,
Adenoviridae - genetics
2020
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.
Journal Article
Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses
by
Coughlan, Lynda
,
Kerstetter, Lucas J.
,
Buckley, Stephen
in
Adaptation
,
adenoviral vector
,
adenovirus
2021
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed
in vivo
following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Journal Article
Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens
by
Coughlan, Lynda
,
Berthoud, Tamara K
,
Antrobus, Richard D
in
Adenovirus
,
Adenoviruses
,
Adenoviruses, Simian - genetics
2014
Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection.
Journal Article
Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions
by
Coughlan, Lynda
,
Baker, Alexander T.
,
Rizkallah, Pierre J.
in
42/44
,
631/1647/2258/1266
,
631/250/590/1991
2019
Adenovirus based vectors are of increasing importance for wide ranging therapeutic applications. As vaccines, vectors derived from human adenovirus species D serotypes 26 and 48 (HAdV-D26/48) are demonstrating promising efficacy as protective platforms against infectious diseases. Significant clinical progress has been made, yet definitive studies underpinning mechanisms of entry, infection, and receptor usage are currently lacking. Here, we perform structural and biological analysis of the receptor binding fiber-knob protein of HAdV-D26/48, reporting crystal structures, and modelling putative interactions with two previously suggested attachment receptors, CD46 and Coxsackie and Adenovirus Receptor (CAR). We provide evidence of a low affinity interaction with CAR, with modelling suggesting affinity is attenuated through extended, semi-flexible loop structures, providing steric hindrance. Conversely, in silico and in vitro experiments are unable to provide evidence of interaction between HAdV-D26/48 fiber-knob with CD46, or with Desmoglein 2. Our findings provide insight into the cell-virus interactions of HAdV-D26/48, with important implications for the design and engineering of optimised Ad-based therapeutics.
Adenovirus based (AdV) vectors are promising platforms for therapeutics and vaccines, but receptor usage of serotypes in clinical development remains unclear. Here, based on crystal structures and modeling, Baker et al. show that HAdV-D26/48 fiber knob protein interacts weakly with CAR but not with CD46 or DSG2.
Journal Article
Low levels of influenza H5N1 HA and NA antibodies in the human population are boosted by seasonal H1N1 infection but not by H3N2 infection or influenza vaccination
2025
A/H5N1 influenza A viruses continue to pose a pandemic threat to humans. Recent infection of dairy cattle and poultry with A/H5N1 in the USA has magnified that concern. We determined the level of antibodies that recognize A/H5N1 hemagglutinin (HA) and neuraminidase (NA) proteins in a population in Baltimore, MD. We show that while low levels of H5 HA-binding and A/H5N1-neutralizing antibodies are present, there is a significantly stronger recognition of bovine N1 NA. Vaccines that target the N1 NA protein may induce protective antibody responses in humans due to the presence of cross-reactive human N1 NA antibodies.
Journal Article
An intranasal adjuvanted, recombinant influenza A/H5 vaccine primes against diverse H5N1 clades: a phase I trial
by
Toapanta, Franklin R.
,
Khurana, Surender
,
Coughlan, Lynda
in
13/31
,
631/250/590/1883
,
631/326/596/1578
2025
Mucosal influenza vaccines may provide improved protection against infection and transmission, but their development is hindered by absence of immune correlates of protection. Here, we report a randomized, controlled phase I trial of a recombinant influenza A/H5 (A/Indonesia/05/2005, clade 2.1) hemagglutinin vaccine formulated with a nanoemulsion adjuvant (W
80
5EC). The vaccine is administered intranasally in two doses 28 days apart at three antigen levels. Controls receive unadjuvanted H5 or placebo. Six months later, participants receive an intramuscular boost with unadjuvanted inactivated A/H5N1 (A/Vietnam/1203/2004, clade 1) vaccine. Primary outcomes are solicited and unsolicited adverse events (AEs), laboratory safety abnormalities, medically-attended AEs, potential immune-mediated conditions, new-onset chronic conditions, and serious AEs. All vaccines are well tolerated. After the intranasal series, hemagglutination inhibition and microneutralization responses are minimal. However, adjuvanted H5 recipients show significant increases in mucosal and serum IgG/IgA, surface plasmon resonance antibody binding, memory B and CD4 T cell activity, and antibody-dependent cell-mediated cytotoxicity. Following H5N1 boost, participants mount robust responses across measurements and have microneutralization responses against diverse H5N1 clades (including circulating clade 2.3.4.4b). Findings demonstrate successful mucosal priming and broad cross-clade responses. This intranasal vaccine supports further exploration of mucosal immune biomarkers and may accelerate development of intranasal influenza vaccines.
ClinicalTrials.gov registration:
NCT05397119
Mucosal influenza vaccines promise enhanced protection but lack defined immune correlates of protection. Here, the authors conduct a phase I trial of an intranasal recombinant influenza A/H5 vaccine with a nanoemulsion adjuvant, demonstrating successful mucosal priming and broad cross-clade immune responses, advancing the development of intranasal influenza vaccines.
Journal Article