Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Courties, Gabriel"
Sort by:
Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration
by
Sun, Yuan
,
Rohde, David
,
Gustavo Santos Masson
in
Animal models
,
Aseptic meningitis
,
Bone marrow
2018
Innate immune cells recruited to inflammatory sites have short life spans and originate from the marrow, which is distributed throughout the long and flat bones. While bone marrow production and release of leukocyte increases after stroke, it is currently unknown whether its activity rises homogeneously throughout the entire hematopoietic system. To address this question, we employed spectrally resolved in vivo cell labeling in the murine skull and tibia. We show that in murine models of stroke and aseptic meningitis, skull bone marrow-derived neutrophils are more likely to migrate to the adjacent brain tissue than cells that reside in the tibia. Confocal microscopy of the skull–dura interface revealed myeloid cell migration through microscopic vascular channels crossing the inner skull cortex. These observations point to a direct local interaction between the brain and the skull bone marrow through the meninges.
Journal Article
IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis
2010
Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis.
In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response.
Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile.
Journal Article
Therapeutic siRNA silencing in inflammatory monocytes in mice
by
Kim, James I
,
Pittet, Mikael J
,
Cantley, William
in
631/250/2504/342
,
631/61/350/354
,
631/61/391/505
2011
In vivo
silencing in specific cell types remains the main obstacle for therapeutic applications of siRNAs. Leuschner
et al
. now show that an optimized lipid nanoparticle delivers siRNA to inflammatory monocytes in mice and, when transporting CCR2 siRNA, has therapeutic effects in cardiovascular disease, cancer and transplant rejection.
Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes—but not the noninflammatory subset—depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.
Journal Article
Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease
2017
Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with
18
F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle’s short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology.
In vivo
imaging of inflammation is crucial for detection and monitoring of many pathologies and noninvasive macrophage quantification has been suggested as a possible approach. Here Keliher
et al
. describe novel polyglucose nanoparticle tracers that are rapidly excreted by the kidney and with high affinity for macrophages in atherosclerotic plaques.
Journal Article
Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche
2020
Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing
Sdf1
) or inhibited (when silencing
Mcp1
) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via
Mcp
1
silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease.
Systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA for silencing genes in bone-marrow endothelial cells of mice improved the healing of the mice after myocardial infarction.
Journal Article
Nicotinamide phosphoribosyltransferase/visfatin expression by inflammatory monocytes mediates arthritis pathogenesis
by
Courties, Gabriel
,
Escriou, Virginie
,
Pers, Yves-Marie
in
Animals
,
Arthritis
,
Arthritis, Experimental - immunology
2013
Objectives Nicotinamide phosphoribosyltransferase (NAMPT)/pre-B-cell colony-enhancing factor/visfatin exerts multiple functions and has been implicated in the pathogenesis of rheumatoid arthritis. To gain insight into its role in arthritis and given that NAMPT is identified as a novel mediator of innate immunity, we addressed the function of monocyte-derived NAMPT in experimental arthritis by selective gene knockdown in inflammatory monocytes. Methods siRNA uptake and NAMPT expression were determined in Ly6Chigh and Ly6Clow monocyte subsets following intravenous injection of siRNA against NAMPT (siNAMPT) or non-targeting siRNA (siCT) formulated with the DMAPAP cationic liposome into mice. Mice with established collagen-induced arthritis (CIA) were treated weekly after disease onset with siNAMPT or siCT and clinical features were assessed. T-helper cell frequencies, cytokine production and percentage of IL-6-producing Ly6Chigh monocytes were analysed. Using a co-culture system consisting of purified CD14 monocytes and autologous CD4 T cells, NAMPT and cytokine production, and the percentage of IL-17-producing CD4 T cells, were determined following transfection of CD14 monocytes with siCT or siNAMPT. Results On intravenous injection, siRNA was preferentially engulfed by Ly6Chigh monocytes, and siRNA-mediated silencing of NAMPT expression in Ly6Chigh monocytes inhibited CIA progression. This effect was associated with reduced IL-6 production by Ly6Chigh monocytes, reduced proportion of Th17 cells and autoantibody titers, and decreased activation and infiltration of monocytes/macrophages and neutrophils in arthritic joints. Moreover, NAMPT-RNAi-silenced CD14 monocytes were found to reduce the percentage of IL-17-producing CD4 T cells in vitro. Conclusions Our results show that the expression of NAMPT in Ly6Chigh monocytes promotes many downstream effects involved in inflammatory arthritis and demonstrate the utility of targeting disease-causing genes, such as NAMPT, in Ly6Chigh monocytes for therapeutic intervention in arthritis.
Journal Article
Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils
by
Tricot, Benoit
,
Pucci, Ferdinando
,
Hynes, Richard O.
in
Adenocarcinoma
,
Advanced glycosylation end products
,
Angiogenesis
2017
A bona fide portrayal of tumor growthBone has a well-established role in advanced cancer. It provides a supportive microenvironment for the growth of metastatic cells that escape the primary tumor, which ultimately leads to loss of bone mass. Engblom et al. show that bone may also contribute to early-stage tumorigenesis through a mechanism that leads to an increase in bone mass (see the Perspective by Zhang and Lyden). In mouse models of lung adenocarcinoma, primary tumor cells remotely activated bone-resident cells called osteoblasts, which have a bone-building function. The activated osteoblasts in turn triggered production of a certain type of neutrophil that infiltrates the primary tumor and promotes its growth. Patients with early-stage lung cancer were also found to have an increase in bone density, consistent with the findings in mice.Science, this issue p. eaal5081; see also p. 1127INTRODUCTIONMyeloid cells have emerged as key regulators of cancer growth because of their abundance in the tumor stroma in a broad range of cancers, their association with clinical outcome, and their ability to modulate tumor progression. Most tumor-infiltrating myeloid cells derive from circulating precursors, which are produced in distant tissues, and some tumors amplify myeloid cell activity by skewing hematopoiesis toward the myeloid lineage or increasing myeloid cell populations in the periphery. For example, patients across diverse cancer types can present with elevated levels of myeloid progenitor cells in peripheral blood. Additionally, increased numbers of circulating myeloid cells, such as neutrophils, often correlate with poorer clinical outcome. It is therefore important to consider host changes that occur away from the tumor stroma to more fully understand the biological processes underlying tumor growth.RATIONALEThe bone marrow is a tissue of particular interest as it is the main production site for hematopoietic cells corresponding to all circulating blood lineages in the adult. The marrow contains resident cell components, such as osteoblasts, which not only participate in bone maintenance but also regulate hematopoiesis and immune cell fate. However, our understanding of bone dynamics in the context of cancer (growing at sites distant from the local bone microenvironment) and related immune responses remains limited. To address this knowledge gap, we explored whether a common solid cancer—lung adenocarcinoma—remotely affects bone tissue and how this might shape tumor-associated hematopoietic responses and tumor growth.RESULTSWe show in different mouse models and in cancer patients (n = 70) that lung adenocarcinomas increase bone stromal activity even in the absence of local metastasis. Animal studies further reveal that the cancer-induced bone phenotype involves bone-resident osteocalcin-expressing (Ocn+) osteoblastic cells. Ocn+ cells affect distant tumor progression because experimentally reducing the number of these cells limits lung tumor growth. Also, Ocn+ cells are required for full-fledged tumor infiltration by a distinct subset of neutrophils that are defined by their high expression of the lectin SiglecF (sialic acid–binding immunoglobulin-like lectin F). Compared to other neutrophils, SiglecFhigh cells express genes associated with cancer-promoting processes, including angiogenesis, myeloid cell differentiation and recruitment, extracellular matrix remodeling, suppression of T cell responses, and tumor cell proliferation and growth. Additionally, SiglecFhigh neutrophils have increased reactive oxygen species production, promote macrophage differentiation, and boost tumor progression in vivo. We further report that the soluble receptor for advanced glycation end products (sRAGE) is up-regulated in the circulation of tumor-bearing mice and fosters osteoblastic activity and osteoblast-dependent neutrophil maturation in vitro.CONCLUSIONThis study identifies systemic cross-talk between lung tumors and bones: Lung tumors can remotely activate Ocn+ osteoblastic cells in bones even in the absence of local metastasis. In turn, these Ocn+ cells supply tumors with SiglecFhigh neutrophils, which foster cancer progression. The findings bear scientific and therapeutic importance because they reveal contributions of the host systemic environment to tumor growth and they position Ocn+ cells, SiglecFhigh neutrophils, and sRAGE as candidate clinical biomarkers and possible intervention points for anticancer therapy.Bone marrow–derived myeloid cells can accumulate within tumors and foster cancer outgrowth. Local immune-neoplastic interactions have been intensively investigated, but the contribution of the systemic host environment to tumor growth remains poorly understood. Here, we show in mice and cancer patients (n = 70) that lung adenocarcinomas increase bone stromal activity in the absence of bone metastasis. Animal studies reveal that the cancer-induced bone phenotype involves bone-resident osteocalcin-expressing (Ocn+) osteoblastic cells. These cells promote cancer by remotely supplying a distinct subset of tumor-infiltrating SiglecFhigh neutrophils, which exhibit cancer-promoting properties. Experimentally reducing Ocn+ cell numbers suppresses the neutrophil response and lung tumor outgrowth. These observations posit osteoblasts as remote regulators of lung cancer and identify SiglecFhigh neutrophils as myeloid cell effectors of the osteoblast-driven protumoral response.
Journal Article
Chronic variable stress activates hematopoietic stem cells
2014
Activation of bone marrow hematopoietic stem cells by chronic stress raises circulating leukocyte levels and increases atherosclerotic plaque inflammation.
Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis
1
,
2
. Although incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known cross-talk between the brain and immune system includes the hypothalamic-pituitary-adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic-adrenal-medullary axis, which controls stress-induced catecholamine release in support of the fight-or-flight reflex
3
,
4
. It remains unknown, however, whether chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive hematopoietic progenitors, giving rise to higher levels of disease-promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Under conditions of chronic variable stress in mice, sympathetic nerve fibers released surplus noradrenaline, which signaled bone marrow niche cells to decrease CXCL12 levels through the β
3
-adrenergic receptor. Consequently, hematopoietic stem cell proliferation was elevated, leading to an increased output of neutrophils and inflammatory monocytes. When atherosclerosis-prone
Apoe
−/−
mice were subjected to chronic stress, accelerated hematopoiesis promoted plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans.
Journal Article
Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells
by
Cremer, Sebastian
,
Ji, Fei
,
Amatullah, Hajera
in
Adipose tissue
,
Arteriosclerosis
,
Atherosclerosis
2019
A sedentary lifestyle, chronic inflammation and leukocytosis increase atherosclerosis; however, it remains unclear whether regular physical activity influences leukocyte production. Here we show that voluntary running decreases hematopoietic activity in mice. Exercise protects mice and humans with atherosclerosis from chronic leukocytosis but does not compromise emergency hematopoiesis in mice. Mechanistically, exercise diminishes leptin production in adipose tissue, augmenting quiescence-promoting hematopoietic niche factors in leptin-receptor-positive stromal bone marrow cells. Induced deletion of the leptin receptor in Prrx1-creERT2; Leprfl/fl mice reveals that leptin’s effect on bone marrow niche cells regulates hematopoietic stem and progenitor cell (HSPC) proliferation and leukocyte production, as well as cardiovascular inflammation and outcomes. Whereas running wheel withdrawal quickly reverses leptin levels, the impact of exercise on leukocyte production and on the HSPC epigenome and transcriptome persists for several weeks. Together, these data show that physical activity alters HSPCs via modulation of their niche, reducing hematopoietic output of inflammatory leukocytes.
Journal Article
B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis
by
Capen, Diane
,
Masson, Gustavo Santos
,
Swirski, Filip K
in
Autonomic nervous system
,
Bone marrow
,
Cardiovascular diseases
2022
Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine esterase decreased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.Nahrendorf and colleagues show that B cells in the bone marrow are an important source of the neurotransmitter acetylcholine, which limits hematopoiesis through modulating the signals produced by the bone marrow stromal niche during steady-state and emergency hematopoiesis.
Journal Article