Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Cramm, Maria"
Sort by:
The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases
This 96-well-plate ‘real-time quaking-induced conversion’ assay allows the detection of abnormal prion protein in human brain and CSF samples. It can be applied to study many protein misfolding diseases, as well as for drug screening and prion strain discrimination. The development and adaption of in vitro misfolded protein amplification systems has been a major innovation in the detection of abnormally folded prion protein scrapie (PrP Sc ) in human brain and cerebrospinal fluid (CSF) samples. Herein, we describe a fast and efficient protein amplification technique, real-time quaking-induced conversion (RT-QuIC), for the detection of a PrP Sc seed in human brain and CSF. In contrast to other in vitro misfolded protein amplification assays—such as protein misfolding cyclic amplification (PMCA)—which are based on sonication, the RT-QuIC technique is based on prion seed–induced misfolding and aggregation of recombinant prion protein substrate, accelerated by alternating cycles of shaking and rest in fluorescence plate readers. A single RT-QuIC assay typically analyzes up to 32 samples in triplicate, using a 96-well-plate format. From sample preparation to analysis of results, the protocol takes ∼87 h to complete. In addition to diagnostics, this technique has substantial generic analytical applications, including drug screening, prion strain discrimination, biohazard screening (e.g., to reduce transmission risk related to prion diseases) and the study of protein misfolding; in addition, it can potentially be used for the investigation of other protein misfolding diseases such as Alzheimer's and Parkinson's disease.
Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease
Real-time quaking-induced conversion (RT-QuIC) allows the amplification of miniscule amounts of scrapie prion protein (PrP Sc ). Recent studies applied the RT-QuIC methodology to cerebrospinal fluid (CSF) for diagnosing human prion diseases. However, to date, there has not been a formal multi-centre assessment of the reproducibility, validity and stability of RT-QuIC in this context, an indispensable step for establishment as a diagnostic test in clinical practice. In the present study, we analysed CSF from 110 prion disease patients and 400 control patients using the RT-QuIC method under various conditions. In addition, “blinded” ring trials between different participating sites were performed to estimate reproducibility. Using the previously established cut-off of 10,000 relative fluorescence units (rfu), we obtained a sensitivity of 85 % and a specificity of 99 %. The multi-centre inter-laboratory reproducibility of RT-QuIC revealed a Fleiss’ kappa value of 0.83 (95 % CI: 0.40–1.00) indicating an almost perfect agreement. Moreover, we investigated the impact of short-term CSF storage at different temperatures, long-term storage, repeated freezing and thawing cycles and the contamination of CSF with blood on the RT-QuIC seeding response. Our data indicated that the PrP Sc seed in CSF is stable to any type of storage condition but sensitive to contaminations with blood (>1250 erythrocytes/μL), which results in a false negative RT-QuIC response. Fresh blood-contaminated samples (3 days) can be rescued by removal of erythrocytes. The present study underlines the reproducibility and high stability of RT-QuIC across various CSF storage conditions with a remarkable sensitivity and specificity, suggesting RT-QuIC as an innovative and robust diagnostic method.
Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie
In vitro amplification assays, such as real-time quaking-induced conversion (RT-QuIC) are used to detect aggregation activity of misfolded prion protein (PrP) in brain, cerebrospinal fluid (CSF) and urine samples from patients with a prion disease. We believe that the method also has a much broader application spectrum. In the present study, we applied RT-QuIC as a pre-screening test for substances that potentially inhibit the aggregation process of the cellular PrP (PrP C ) to proteinase (PK)-resistant PrP res . We chose doxycycline as the test substance as it has been tested successfully in animal models and proposed in clinical studies as a therapeutic for prion diseases. The RT-QuIC-reaction was seeded with brain tissue or CSF from sCJD patients and doxycycline was then added in different concentrations as well as at different time points. In both experiments, we observed a dose- and time-dependent inhibition of the RT-QuIC seeding response and a decrease of PK resistant PrP res when doxycycline was added. In contrast, ampicillin or sucrose had no effect on the RT-QuIC seeding response. Our study is the first to apply RT-QuIC as a pre-screening assay for compounds inhibiting the PrP aggregation in vitro and confirms that doxycycline is an efficient inhibitor of the PrP aggregation process in RT-QuIC analysis.
Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays
Background α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Main body Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. Conclusion The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies .
Optimization of the Real-Time Quaking-Induced Conversion Assay for Prion Disease Diagnosis
The real-time quaking-induced conversion (RT-QuIC) assay is a highly reproducible and robust methodology exhibiting an excellent pre-mortem diagnostic accuracy for prion diseases. However, the protocols might be time-consuming and improvement of the detection technology is needed. In the present study, we investigated the influence of a pre-analytical cerebrospinal fluid (CSF) treatment with proteinase K (PK) on the kinetic of the RT-QuIC signal response. For this purpose, we added PK at different concentrations in RT-QuIC reactions seeded with Creutzfeldt-Jakob disease (sCJD) CSF. We observed that a mild pre-analytical PK treatment of CSF samples resulted in an increased seeding efficiency of the RT-QuIC reaction. Quantitative seeding parameters, such as a higher area under the curve (AUC) value or a shorter lag phase indicated a higher conversion efficiency after treatment. The diagnostic accuracy resulting from 2 μg/ml PK treatment was analyzed in a retrospective study, where we obtained a sensitivity of 89%. Additionally, we analyzed the agreement with the previously established standard RT-QuIC protocol without PK treatment in a prospective study. Here, we found an overall agreement of 94% to 96%. A Cohen's kappa of 0.9036 (95% CI: 0.8114-0.9958) indicates an almost perfect agreement between both protocols. In conclusion, the outcome of our study can be used for a further optimization of the RT-QuIC assay in particular for a reduction of the testing time.
Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis. Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model. Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.
Application of real-time quaking-induced conversion in Creutzfeldt–Jakob disease surveillance
Background Evaluation of the application of CSF real-time quaking-induced conversion in Creutzfeldt–Jakob disease surveillance to investigate test accuracy, influencing factors, and associations with disease incidence. Methods In a prospective surveillance study, CSF real-time quaking-induced conversion was performed in patients with clinical suspicion of prion disease (2014–2022). Clinically or histochemically characterized patients with sporadic Creutzfeldt–Jakob disease ( n  = 888) and patients with final diagnosis of non-prion disease ( n  = 371) were included for accuracy and association studies. Results The overall test sensitivity for sporadic Creutzfeldt–Jakob disease was 90% and the specificity 99%. Lower sensitivity was associated with early disease stage ( p  = 0.029) and longer survival ( p  < 0.001). The frequency of false positives was significantly higher in patients with inflammatory CNS diseases (3.7%) than in other diagnoses (0.4%, p  = 0.027). The incidence increased from 1.7 per million person-years (2006–2017) to 2.0 after the test was added to diagnostic the criteria (2018–2021). Conclusion We validated high diagnostic accuracy of CSF real-time quaking-induced conversion but identified inflammatory brain disease as a potential source of (rare) false-positive results, indicating thorough consideration of this condition in the differential diagnosis of Creutzfeldt–Jakob disease. The surveillance improved after amendment of the diagnostic criteria, whereas the incidence showed no suggestive alterations during the COVID-19 pandemic.
Characteristic CSF Prion Seeding Efficiency in Humans with Prion Diseases
The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrP Sc ) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrP Sc type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrP Sc type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrP Sc characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration.
Evidence for different seeding activities of misfolded tau in classical and rapidly progressive Alzheimer's disease
Alzheimer's disease (AD) may display various clinical phenotypes with different disease progressions, such as rapidly progressive Alzheimer's disease (rpAD) type. The reason for clinical heterogeneity is still unknown and not predictable. Here, we subjected frontal cortex-derived tau seeds from classical AD, rpAD patients and controls to tau real-time quaking-induced conversion (RT-QuIC) assay analysis and examined biochemical properties, toxicity, and the morphology of tau fibrils generated during the RT-QuIC applying a cell-based assay and transmission electron microscopy (TEM). We observed seeding activity of misfolded tau protein in AD patients, which was significantly higher than in control cases. Additionally, the RT-QuIC signal response revealed differences between AD cases with a classical clinical phenotype and those with a rapidly progressive course of the disease (rpAD). The RT-QuIC reaction seeded with brain from rpAD exhibited a shorter lag phase, higher area under the curve and a higher seeding end point dilution compared to classical AD, independent from the Braak stage. The cellular toxicity of thioflavin T-positive RT-QuIC products from rpAD-seeded reactions was higher compared to those seeded by classical AD and controls. Morphological characterization of brain tissue-seeded RT-QuIC end-products via TEM showed that tau fibrils derived from rpAD seeded reactions revealed subtly different morphologies compared to classical AD. The study provides evidence for the existence of different tau assemblies in AD with different progression rates. As an alternative explanation, differences in the amounts of misfolded seed or the presence of other co-factors might influence the seeding activity of tau in AD and rpAD patients.
Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease
The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.