Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Darbre, Stephanie"
Sort by:
Burden of severe RSV disease among immunocompromised children and adults: a 10 year retrospective study
2018
Background
Respiratory syncytial virus (RSV) is associated with significant mortality rates amongst hematopoietic stem cell transplant (HSCT) recipients, with less known about other immunocompromised patients.
Methods
Ten-year retrospective cohort study of immunocompromised patients presenting with RSV disease documented at University Hospitals of Lausanne and Geneva. Severe RSV-related outcomes referred to RSV documented respiratory conditions requiring hospital admission, presenting as lower respiratory tract infection (LRTI) or pneumonia. We used multivariable logistic regression to assess clinical and laboratory correlates of severe RSV disease.
Results
From 239 RSV-positive immunocompromised in and out-patients 175 were adults and 64 children of whom 111 (47.8%) presented with LRTI, which resulted in a 38% (89/239) admission rate to hospital. While immunocompromised children were more likely to be admitted to hospital compared to adults (75% vs 62.9%,
p
= 0.090), inpatients admitted to the intensive care unit (17/19) or those who died (11/11) were mainly adults. From multivariable analyses, adults with solid tumors (OR 5.2; 95% CI: 1.4–20.9
P = 0.015
) or those requiring chronic immunosuppressive treatments mainly for rheumatologic conditions (OR 4.1; 95% CI: 1.1–16.0;
P = 0.034
) were significantly more likely to be admitted to hospital compared to hematopoietic stem cell (HSCT) recipients. Bacterial co-infection was significantly and consistently associated with viral LRTI and pneumonia.
Conclusions
From our findings, RSV-related disease results in a significant burden among adults requiring chronic immunosuppressive treatments for rheumatological conditions and those with solid tumors. As such, systematic screening for respiratory viruses, should be extended to other immunocompromised populations than HSCT recipients.
Journal Article
Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy
2017
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL
eff
) responses. Conversely, the induction of protective tumour-specific CTL
eff
and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL
eff
responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL
eff
influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy.
Viruses trigger potent cytotoxic T cell responses, whereas anti-tumour immunity has been difficult to establish. Here the authors engineer a replicating viral delivery system for tumour-associated antigens, which induces alarmin release, innate activation and protective anti-tumour immunity in mice.
Journal Article
Replication-Deficient Lymphocytic Choriomeningitis Virus-Vectored Vaccine Candidate for the Induction of T Cell Immunity against Mycobacterium tuberculosis
2022
Mycobacterium tuberculosis (Mtb) represents a major burden to global health, and refined vaccines are needed. Replication-deficient lymphocytic choriomeningitis virus (rLCMV)-based vaccine vectors against cytomegalovirus have proven safe for human use and elicited robust T cell responses in a large proportion of vaccine recipients. Here, we developed an rLCMV vaccine expressing the Mtb antigens TB10.4 and Ag85B. In mice, rLCMV elicited high frequencies of polyfunctional Mtb-specific CD8 and CD4 T cell responses. CD8 but not CD4 T cells were efficiently boosted upon vector re-vaccination. High-frequency responses were also observed in neonatally vaccinated mice, and co-administration of rLCMV with Expanded Program of Immunization (EPI) vaccines did not result in substantial reciprocal interference. Importantly, rLCMV immunization significantly reduced the lung Mtb burden upon aerosol challenge, resulting in improved lung ventilation. Protection was associated with increased CD8 T cell recruitment but reduced CD4 T cell infiltration upon Mtb challenge. When combining rLCMV with BCG vaccination in a heterologous prime-boost regimen, responses to the rLCMV-encoded Mtb antigens were further augmented, but protection was not significantly different from rLCMV or BCG vaccination alone. This work suggests that rLCMV may show utility for neonatal and/or adult vaccination efforts against pulmonary tuberculosis.
Journal Article