Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
107 result(s) for "Daube, Georges"
Sort by:
Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods
Abstract Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization. Microbial ecology of industrial Kombucha fermentations.
Gut Microbiota Composition Associated with Clostridioides difficile Colonization and Infection
Clostridioides difficile is an anaerobic Gram-positive and spore-forming bacterium. The majority of C. difficile strains produce two toxins, A and B, associated with the development of acute diarrhea and/or colitis. In this review, two situations are distinguished: C. difficile infection (CDI) and asymptomatic colonization (AC). The main objective of this review is to explore the available data related to the link between the gut microbiota and the development of CDI. The secondary aim is to provide more information on why some people colonized with toxigenic C. difficile develop an infection while others show no signs of disease. Several factors, such as the use of antibiotics and proton pump inhibitors, hospitalization, and age, predispose individuals to C. difficile colonization and/or C. difficile infection. The gut microbiota of people with AC showed decreased abundances of Prevotella, Alistipes, Bacteroides, Bifidobacterium, Dorea, Coprococcus, and Roseburia. The gut microbiota of people suffering from CDI showed reductions in the abundances of Lachnospiraceae, Ruminococcaceae, Blautia spp., Prevotella spp., Dialister spp., Bifidobacterium spp., Roseburia spp., Anaerostipes spp., Faecalibacterium spp. and Coprococcus spp., in comparison with healthy people. Furthermore, increases in the abundances of Enterococcaceae and Enterococcus were associated with C. difficile infection.
Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: a double-blind randomized placebo-controlled trial
Several studies suggest that microbial alterations (dysbiosis) are intimately linked to chronic inflammation occurring upon aging. The aim of this study was to investigate the potential interest of a synbiotic approach (co-administration of a probiotic bacteria and a prebiotic dietary fibre) to improve gastrointestinal wellness and inflammatory markers in middle-aged people. Middle-aged subjects were randomized to take synbiotic ( Bifidobacterium animalis lactis and fructo-oligosaccharides (FOS)) or placebo for 30 days. Stool frequency and consistency were improved in both placebo and synbiotic-treated volunteers while the synbiotic treatment significantly decreased the number of days with abdominal discomfort. Synbiotic treatment had no impact on mood dimensions, quality of life scores or the overall composition of the gut microbiota (16S rRNA gene sequencing of DNA extracted from stool). Importantly, plasma proinflammatory cytokines (interleukin (IL)-6, IL-8, IL-17a and interferon-gamma (IFNγ)) were significantly lower after 30 days of synbiotic supplementation. This effect appears to be independent of the gut barrier function. This study demonstrates that a combination of B. animalis lactis and the well-known prebiotic FOS could be a promising synbiotic strategy to decrease inflammatory status with improvement of gut disorders in middle-aged people.
HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources
Despite the high prevalence of both cervico-vaginal human papillomavirus (HPV) infection and bacterial vaginosis (BV) worldwide, their causal relationship remains unclear. While BV has been presumed to be a risk factor for HPV acquisition and related carcinogenesis for a long time, here, supported by both a large retrospective follow-up study ( n  = 6,085) and extensive in vivo data using the K14-HPV16 transgenic mouse model, we report a novel blueprint in which the opposite association also exists. Mechanistically, by interacting with several core members (NEMO, CK1 and β-TrCP) of both NF-κB and Wnt/β-catenin signaling pathways, we show that HPV E7 oncoprotein greatly inhibits host defense peptide expression. Physiologically secreted by the squamous mucosa lining the lower female genital tract, we demonstrate that some of these latter are fundamental factors governing host-microbial interactions. More specifically, several innate molecules down-regulated in case of HPV infection are hydrolyzed, internalized and used by the predominant Lactobacillus species as amino acid source sustaining their growth/survival. Collectively, this study reveals a new viral immune evasion strategy which, by its persistent/negative impact on lactic acid bacteria, ultimately causes the dysbiosis of vaginal microbiota. Here, the authors show that HPV infection leads to downregulation of host mucosal innate peptides, which are in turn used by predominant Lactobacillus species as amino acid source, promoting ultimately an imbalance in the vaginal flora.
Antimicrobial Resistance in the Food Chain: A Review
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Longitudinal Changes in Fecal Microbiota During Hospitalization in Horses With Different Types of Colic
Background Research on fecal microbiota changes during hospitalization of horses with colic is emerging. Objectives Describe changes of the fecal microbiota during hospitalization of horses with colic caused by inflammatory (INFL), simple (SIMPLE), and strangulated (STR) obstructions, and investigate associations with survival. Animals Twenty‐three horses with colic: 9 in INFL, 5 in STR, and 9 in SIMPLE groups. Seventeen horses survived, and 6 were euthanized. Methods Prospective observational study. Fecal samples were collected on admission (D1), on days 3 (D3) and 5 (D5). Bacterial taxonomy profiling was obtained by V1V3 16S amplicon sequencing. Data were compared using a 2‐way permutational analysis of variance (PERMANOVA). Linear discriminant analysis Effect Size (LEfSE) analysis identified significant bacterial population differences, with significance set at p < 0.05 and a linear discriminant analysis (LDA) cut‐off > 3.0. Results Alpha diversity indices remained stable during hospitalization within each colic group. However, at D5, the INFL group had significantly higher richness (p < 0.01) and diversity (Shannon, p < 0.001 and Simpson, p < 0.05) than other colic types. Beta diversity (Jaccard membership and Bray‐Curtis indices) was significantly different in the INFL compared to SIMPLE and STR groups (both p < 0.001) but not between SIMPLE and STR. Beta diversity membership analysis by analysis of molecular variance (AMOVA) indicated a significant difference between survivors and non‐survivors within the INFL group (p < 0.01). Increased relative abundances of Bacilliculturomica and Saccharofermentans were associated with survival. Conclusions Microbiota showed no significant variation over 5 days of hospitalization. Colic type influenced fecal microbiota more than hospitalization duration. Specific bacterial populations may differ between survival and non‐survival groups.
Variations in facial conformation are associated with differences in nasal microbiota in healthy dogs
Background Extrinsic and intrinsic factors have been shown to influence nasal microbiota (NM) in humans. Very few studies investigated the association between nasal microbiota and factors such as facial/body conformation, age, and environment in dogs. The objectives are to investigate variations in NM in healthy dogs with different facial and body conformations. A total of 46 dogs of different age, living environment and from 3 different breed groups were recruited: 22 meso−/dolichocephalic medium to large breed dogs, 12 brachycephalic dogs and 12 terrier breeds. The nasal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V1-V3 regions) amplicons. Results We showed major differences in the NM composition together with increased richness and α-diversity in brachycephalic dogs, compared to meso−/dolichocephalic medium to large dogs and dogs from terrier breeds. Conclusion Healthy brachycephalic breeds and their unique facial conformation is associated with a distinct NM profile. Description of the NM in healthy dogs serves as a foundation for future researches assessing the changes associated with disease and the modulation of NM communities as a potential treatment.
Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction
The vascular dysfunction is the primary event in the occurrence of cardio-vascular risk, and no treatment exists until now. We tested for the first time the hypothesis that chitin-glucan (CG) - an insoluble fibre with prebiotic properties- and polyphenol-rich pomegranate peel extract (PPE) can improve endothelial and inflammatory disorders in a mouse model of cardiovascular disease (CVD), namely by modulating the gut microbiota. Male Apolipoprotein E knock-out (ApoE−/−) mice fed a high fat (HF) diet developed a significant endothelial dysfunction attested by atherosclerotic plaques and increasing abundance of caveolin-1 in aorta. The supplementation with CG + PPE in the HF diet reduced inflammatory markers both in the liver and in the visceral adipose tissue together with a reduction of hepatic triglycerides. In addition, it increased the activating form of endothelial NO-synthase in mesenteric arteries and the heme-nitrosylated haemoglobin (Hb-NO) blood levels as compared with HF fed ApoE−/− mice, suggesting a higher capacity of mesenteric arteries to produce nitric oxide (NO). This study allows to pinpoint gut bacteria, namely Lactobacillus and Alistipes , that could be implicated in the management of endothelial and inflammatory dysfunctions associated with CVD, and to unravel the role of nutrition in the modulation of those bacteria.
Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice
We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.
Assessment of the nasal microbiota in dogs with fungal rhinitis before and after cure and in dogs with chronic idiopathic rhinitis
Background Pathogenesis of canine fungal rhinitis is still not fully understood. Treatment remains challenging, after cure turbinate destruction may be associated with persistent clinical signs and recurrence of fungal rhinitis can occur. Alterations of the nasal microbiota have been demonstrated in dogs with chronic idiopathic rhinitis and nasal neoplasia, although whether they play a role in the pathogenesis or are a consequence of the disease is still unknown. The objectives of the present study were (1) to describe nasal microbiota alterations associated with fungal rhinitis in dogs, compared with chronic idiopathic rhinitis and controls, (2) to characterize the nasal microbiota modifications associated with successful treatment of fungal rhinitis. Forty dogs diagnosed with fungal rhinitis, 14 dogs with chronic idiopathic rhinitis and 29 healthy control dogs were included. Nine of the fungal rhinitis dogs were resampled after successful treatment with enilconazole infusion. Results Only disease status contributed significantly to the variability of the microbiota. The relative abundance of the genus Moraxella was decreased in the fungal rhinitis (5.4 ± 18%) and chronic idiopathic rhinitis (4.6 ± 8.7%) groups compared to controls (51.8 ± 39.7%). Fungal rhinitis and chronic idiopathic rhinitis groups also showed an increased richness and α-diversity at species level compared with controls. Increase in unique families were associated with fungal rhinitis (Staphyloccaceae, Porphyromonadaceae, Enterobacteriaceae and Neisseriaceae) and chronic idiopathic rhinitis (Pasteurellaceae and Lactobacillaceae). In dogs with fungal rhinitis at cure, only 1 dog recovered a high relative abundance of Moraxellaceae. Conclusions Results confirm major alterations of the nasal microbiota in dogs affected with fungal rhinitis and chronic idiopathic rhinitis, consisting mainly in a decrease of  Moraxella . Besides, a specific dysbiotic profile further differentiated fungal rhinitis from chronic idiopathic rhinitis. In dogs with fungal rhinitis, whether the NM returns to its pre-infection state or progresses toward chronic idiopathic rhinitis or fungal rhinitis recurrence warrants further investigation.