Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,398 result(s) for "Davey Smith George"
Sort by:
Orienting the causal relationship between imprecisely measured traits using GWAS summary data
Inference about the causal structure that induces correlations between two traits can be achieved by combining genetic associations with a mediation-based approach, as is done in the causal inference test (CIT). However, we show that measurement error in the phenotypes can lead to the CIT inferring the wrong causal direction, and that increasing sample sizes has the adverse effect of increasing confidence in the wrong answer. This problem is likely to be general to other mediation-based approaches. Here we introduce an extension to Mendelian randomisation, a method that uses genetic associations in an instrumentation framework, that enables inference of the causal direction between traits, with some advantages. First, it can be performed using only summary level data from genome-wide association studies; second, it is less susceptible to bias in the presence of measurement error or unmeasured confounding. We apply the method to infer the causal direction between DNA methylation and gene expression levels. Our results demonstrate that, in general, DNA methylation is more likely to be the causal factor, but this result is highly susceptible to bias induced by systematic differences in measurement error between the platforms, and by horizontal pleiotropy. We emphasise that, where possible, implementing MR and appropriate sensitivity analyses alongside other approaches such as CIT is important to triangulate reliable conclusions about causality.
Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians
Mendelian randomisation uses genetic variation as a natural experiment to investigate the causal relations between potentially modifiable risk factors and health outcomes in observational data. As with all epidemiological approaches, findings from Mendelian randomisation studies depend on specific assumptions. We provide explanations of the information typically reported in Mendelian randomisation studies that can be used to assess the plausibility of these assumptions and guidance on how to interpret findings from Mendelian randomisation studies in the context of other sources of evidence
On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments
We investigate the behavior of the Lasso for selecting invalid instruments in linear instrumental variables models for estimating causal effects of exposures on outcomes, as proposed recently by Kang et al. Invalid instruments are such that they fail the exclusion restriction and enter the model as explanatory variables. We show that for this setup, the Lasso may not consistently select the invalid instruments if these are relatively strong. We propose a median estimator that is consistent when less than 50% of the instruments are invalid, and its consistency does not depend on the relative strength of the instruments, or their correlation structure. We show that this estimator can be used for adaptive Lasso estimation, with the resulting estimator having oracle properties. The methods are applied to a Mendelian randomization study to estimate the causal effect of body mass index (BMI) on diastolic blood pressure, using data on individuals from the UK Biobank, with 96 single nucleotide polymorphisms as potential instruments for BMI. Supplementary materials for this article are available online.
Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study
AbstractObjectiveTo evaluate whether body size in early life has an independent effect on risk of disease in later life or whether its influence is mediated by body size in adulthood.DesignTwo sample univariable and multivariable mendelian randomisation.SettingThe UK Biobank prospective cohort study and four large scale genome-wide association studies (GWAS) consortiums.Participants453 169 participants enrolled in UK Biobank and a combined total of more than 700 000 people from different GWAS consortiums.ExposuresMeasured body mass index during adulthood (mean age 56.5) and self-reported perceived body size at age 10.Main outcome measuresCoronary artery disease, type 2 diabetes, breast cancer, and prostate cancer.ResultsHaving a larger genetically predicted body size in early life was associated with an increased odds of coronary artery disease (odds ratio 1.49 for each change in body size category unless stated otherwise, 95% confidence interval 1.33 to 1.68) and type 2 diabetes (2.32, 1.76 to 3.05) based on univariable mendelian randomisation analyses. However, little evidence was found of a direct effect (ie, not through adult body size) based on multivariable mendelian randomisation estimates (coronary artery disease: 1.02, 0.86 to 1.22; type 2 diabetes:1.16, 0.74 to 1.82). In the multivariable mendelian randomisation analysis of breast cancer risk, strong evidence was found of a protective direct effect for larger body size in early life (0.59, 0.50 to 0.71), with less evidence of a direct effect of adult body size on this outcome (1.08, 0.93 to 1.27). Including age at menarche as an additional exposure provided weak evidence of a total causal effect (univariable mendelian randomisation odds ratio 0.98, 95% confidence interval 0.91 to 1.06) but strong evidence of a direct causal effect, independent of early life and adult body size (multivariable mendelian randomisation odds ratio 0.90, 0.85 to 0.95). No strong evidence was found of a causal effect of either early or later life measures on prostate cancer (early life body size odds ratio 1.06, 95% confidence interval 0.81 to 1.40; adult body size 0.87, 0.70 to 1.08).ConclusionsThe findings suggest that the positive association between body size in childhood and risk of coronary artery disease and type 2 diabetes in adulthood can be attributed to individuals remaining large into later life. However, having a smaller body size during childhood might increase the risk of breast cancer regardless of body size in adulthood, with timing of puberty also putatively playing a role.
DNA methylation-based predictors of health: applications and statistical considerations
DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.DNA methylation-based predictors of health aim to predict outcomes such as exposure, phenotype or disease on the basis of genome-wide levels of DNA methylation. The authors review applications of existing DNA methylation-based predictors and highlight key statistical best practices to ensure their reliable performance.
Genetic epidemiology and Mendelian randomization for informing disease therapeutics: Conceptual and methodological challenges
The past decade has been proclaimed as a hugely successful era of gene discovery through the high yields of many genome-wide association studies (GWAS). However, much of the perceived benefit of such discoveries lies in the promise that the identification of genes that influence disease would directly translate into the identification of potential therapeutic targets, but this has yet to be realized at a level reflecting expectation. One reason for this, we suggest, is that GWAS, to date, have generally not focused on phenotypes that directly relate to the progression of disease and thus speak to disease treatment.
Collider bias undermines our understanding of COVID-19 disease risk and severity
Numerous observational studies have attempted to identify risk factors for infection with SARS-CoV-2 and COVID-19 disease outcomes. Studies have used datasets sampled from patients admitted to hospital, people tested for active infection, or people who volunteered to participate. Here, we highlight the challenge of interpreting observational evidence from such non-representative samples. Collider bias can induce associations between two or more variables which affect the likelihood of an individual being sampled, distorting associations between these variables in the sample. Analysing UK Biobank data, compared to the wider cohort the participants tested for COVID-19 were highly selected for a range of genetic, behavioural, cardiovascular, demographic, and anthropometric traits. We discuss the mechanisms inducing these problems, and approaches that could help mitigate them. While collider bias should be explored in existing studies, the optimal way to mitigate the problem is to use appropriate sampling strategies at the study design stage. Many published studies of the current SARS-CoV-2 pandemic have analysed data from non-representative samples from populations. Here, using UK BioBank samples, Gibran Hemani and colleagues discuss the potential for such studies to suffer from collider bias, and provide suggestions for optimising study design to account for this.
Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues
We respond to criticisms of Mendelian randomization (MR) by Mukamal, Stampfer and Rimm (MSR). MSR consider that MR is receiving too much attention and should be renamed. We explain how MR links to Mendel’s laws, the origin of the name and our lack of concern regarding nomenclature. We address MSR’s substantive points regarding MR of alcohol and cardiovascular disease, an issue on which they dispute the MR findings. We demonstrate that their strictures with respect to population stratification, confounding, weak instrument bias, pleiotropy and confounding have been addressed, and summarise how the field has advanced in relation to the issues they raise. We agree with MSR that “the hard problem of conducting high-quality, reproducible epidemiology” should be addressed by epidemiologists. However we see more evidence of confrontation of this issue within MR, as opposed to conventional observational epidemiology, within which the same methods that have demonstrably failed in the past are simply rolled out into new areas, leaving their previous failures unexamined.
Characterising metabolomic signatures of lipid-modifying therapies through drug target mendelian randomisation
Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1 ) , high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r 2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r 2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.
Mendelian randomisation for mediation analysis: current methods and challenges for implementation
Mediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error. Mendelian randomisation (MR) can be used to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation analysis with MR: multivariable MR (MVMR) and two-step MR. We outline the approaches and provide code to demonstrate how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement error, weak instrument bias, interactions between exposures and mediators and analysis of multiple mediators. Description of the methods is supplemented by simulated and real data examples. Although MR relies on large sample sizes and strong assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our simulations demonstrate that these methods are unaffected by confounders of the exposure or mediator and the outcome and non-differential measurement error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR and summary data MR. MR mediation methods require different assumptions to be made, compared with non-instrumental variable mediation methods. Where these assumptions are more plausible, MR can be used to improve causal inference in mediation analysis.