Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Debnath, Jayanta"
Sort by:
Autophagy and autophagy-related pathways in cancer
2023
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.Autophagy can serve both tumour-suppressive and tumour-promoting roles, often depending on disease stage and mutational background. Recent findings have advanced our understanding of these seemingly opposing roles of autophagy in cancer cells themselves and in the tumour microenvironment.
Journal Article
Autophagy and the cell biology of age-related disease
2018
Macroautophagy (autophagy) is a conserved lysosomal degradation process essential for cellular homeostasis and adaption to stress. Accumulating evidence indicates that autophagy declines with age and that impaired autophagy predisposes individuals to age-related diseases, whereas interventions that stimulate autophagy often promote longevity. In this Review, we examine how the autophagy pathway restricts cellular damage and degeneration, and the impact of these functions towards tissue health and organismal lifespan.
In this Review, Leidal et al. discuss the role and regulation of autophagy in aging. They cover how autophagy promotes longevity and restricts cellular damage, and discuss autophagy modulators for the potential treatment of age-related diseases.
Journal Article
Lysosomal lipid peroxidation mediates immunogenic cell death
2023
Cancer cells rely on lysosome-dependent degradation to recycle nutrients that serve their energetic and biosynthetic needs. Despite great interest in repurposing the antimalarial hydroxychloroquine as a lysosomal inhibitor in clinical oncology trials, the mechanisms by which hydroxychloroquine and other lysosomal inhibitors induce tumor-cell cytotoxicity remain unclear. In this issue of the JCI, Bhardwaj et al. demonstrate that DC661, a dimeric form of chloroquine that inhibits palmitoyl-protein thioesterase 1 (PPT1), promoted lysosomal lipid peroxidation, resulting in lysosomal membrane permeabilization and tumor cell death. Remarkably, this lysosomal cell death pathway elicited cell-intrinsic immunogenicity and promoted T lymphocyte-mediated tumor cell clearance. The findings provide the mechanistic foundation for the potential combined use of immunotherapy and lysosomal inhibition in clinical trials.
Journal Article
The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles
2020
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.Leidal et al. show that the LC3-conjugation pathway, which is part of the autophagy machinery, controls extracellular vesicle cargo loading and secretion of RNA-binding proteins.
Journal Article
Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease
by
Richardson, Arlan
,
Strong, Randy
,
Podlutskaya, Natalia
in
Aging
,
Alzheimer Disease - drug therapy
,
Alzheimer's disease
2010
Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1], [2], [3], [4]. It was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway would delay or prevent age-associated disease such as AD remained to be determined.
We used rapamycin administration and behavioral tools in a mouse model of AD as well as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Abeta(42), a major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR pathway can reduce Abeta(42) levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the reduction in Abeta and the improvement in cognitive function are due in part to increased autophagy, possibly as a response to high levels of Abeta.
Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical settings, may be a potentially effective therapeutic agent for the treatment of AD.
Journal Article
Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion
2021
Autophagy classically functions to maintain cell health during stressful conditions by targeting cytosolic components for degradation and recycling via lysosomal pathways. However, accumulating evidence also supports roles for autophagy‐related genes (ATGs) in non‐degradative processes including cellular secretion. Here, we review emerging roles for the autophagy machinery in regulating extracellular vesicle loading and secretion and discuss how functional coupling of these pathways may impact normal physiology and disease.
Journal Article
Autophagy at the crossroads of catabolism and anabolism
2015
Key Points
Autophagy is a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome.
Autophagy was originally believed to non-selectively sequester and degrade cytoplasmic material. However, it is increasingly being appreciated that autophagy is a selective process, resulting in the targeted engulfment of specific cargoes such as mitochondria, peroxisomes and ribosomes, and protein aggregates.
Although protein catabolism is a salient feature of autophagy, recent research has uncovered that autophagy mobilizes diverse cellular energy and nutrient stores such as lipids, carbohydrates and iron.
In certain contexts, autophagic degradation is tightly linked with anabolic processes within cells. For example, autophagy-derived amino acids are important for enabling protein synthesis in mammalian cells.
During starvation, multiple transcriptional networks coordinate the autophagic degradation of intracellular lipids (lipophagy) in conjunction with other processes, promoting lipid catabolism.
Recent research demonstrating the selective autophagic degradation of iron–ferritin complexes has uncovered the importance of autophagy in mobilizing cellular nutrient stores.
Autophagy serves to degrade proteins during starvation. Recent progress has illuminated how, during starvation and nutrient repletion, autophagy can mobilize diverse cellular energy and nutrient stores, such as lipids, carbohydrates and iron, to salvage key metabolites that sustain and facilitate core anabolic functions.
Autophagy is a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome. Starvation-induced protein degradation is a salient feature of autophagy but recent progress has illuminated how autophagy, during both starvation and nutrient-replete conditions, can mobilize diverse cellular energy and nutrient stores such as lipids, carbohydrates and iron. Processes such as lipophagy, glycophagy and ferritinophagy enable cells to salvage key metabolites to sustain and facilitate core anabolic functions. Here, we discuss the established and emerging roles of autophagy in fuelling biosynthetic capacity and in promoting metabolic and nutrient homeostasis.
Journal Article
Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency
2020
Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin
1
,
2
. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when
Grn
−/−
microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from
Grn
−/−
microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.
In the absence of progranulin, microglia enter a disease-specific state that causes endolysosomal dysfunction and neurodegeneration, and these microglia promote TDP-43 granule formation, nuclear pore defects and cell death specifically in excitatory neurons via the complement activation pathway.
Journal Article
Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment
2016
The rising success of cancer immunotherapy has produced immense interest in defining the clinical contexts that may benefit from this therapeutic approach. To this end, there is a need to ascertain how the therapeutic modulation of intrinsic cancer cell programs influences the anticancer immune response. For example, the role of autophagy as a tumor cell survival and metabolic fitness pathway is being therapeutically targeted in ongoing clinical trials that combine cancer therapies with antimalarial drugs for the treatment of a broad spectrum of cancers, many of which will likely benefit from immunotherapy. However, our current understanding of the interplay between autophagy and the immune response remains incomplete. Here, we have evaluated how autophagy inhibition impacts the antitumor immune response in immune-competent mouse models of melanoma and mammary cancer. We observed equivalent levels of T cell infiltration and function within autophagy-competent and -deficient tumors, even upon treatment with the anthracycline chemotherapeutic doxorubicin. Similarly, we found equivalent T cell responses upon systemic treatment of tumor-bearing mice with antimalarial drugs. Our findings demonstrate that antitumor adaptive immunity is not adversely impaired by autophagy inhibition in these models, allowing for the future possibility of combining autophagy inhibitors with immunotherapy in certain clinical contexts.
Journal Article