Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Dietel, Katharina"
Sort by:
Ethanol consumption inhibits TFH cell responses and the development of autoimmune arthritis
2020
Alcohol consumption is a consistent protective factor for the development of autoimmune diseases such as rheumatoid arthritis (RA). The underlying mechanism for this tolerance-inducing effect of alcohol, however, is unknown. Here we show that alcohol and its metabolite acetate alter the functional state of T follicular helper (T
FH
) cells in vitro and in vivo, thereby exerting immune regulatory and tolerance-inducing properties. Alcohol-exposed mice have reduced Bcl6 and PD-1 expression as well as IL-21 production by T
FH
cells, preventing proper spatial organization of T
FH
cells to form T
FH
:B cell conjugates in germinal centers. This effect is associated with impaired autoantibody formation, and mitigates experimental autoimmune arthritis. By contrast, T cell independent immune responses and passive models of arthritis are not affected by alcohol exposure. These data clarify the immune regulatory and tolerance-inducing effect of alcohol consumption.
Moderate consumption of alcohol is associated with protection from some autoimmune diseases. Here the authors show that ethanol and its metabolite acetate can protect mice from collagen-induced arthritis and provide evidence that the mechanism of this effect might be via inhibition of the effector function of T follicular helper cells.
Journal Article
Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells
2017
Number of IL-9-expressing ILC2s are elevated in patients with inflammatory arthritis during remission, and these cells are critical in mice for the resolution of inflammatory arthritis via regulatory T cell induction. Delivery of DNA minicircles encoding IL-9 into inflamed joints ameliorates mouse experimental arthritis, suggesting possible therapeutic applications.
Inflammatory diseases such as arthritis are chronic conditions that fail to resolve spontaneously. While the cytokine and cellular pathways triggering arthritis are well defined, those responsible for the resolution of inflammation are incompletely characterized. Here we identified interleukin (IL)-9-producing type 2 innate lymphoid cells (ILC2s) as the mediators of a molecular and cellular pathway that orchestrates the resolution of chronic inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation and activation of regulatory T (T
reg
) cells, and resulted in chronic arthritis with excessive cartilage destruction and bone loss. In contrast, treatment with IL-9 promoted ILC2-dependent T
reg
activation and effectively induced resolution of inflammation and protection of bone. Patients with rheumatoid arthritis in remission exhibited high numbers of IL-9
+
ILC2s in joints and the circulation. Hence, fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses.
Journal Article
Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss
by
Klareskog, Lars
,
Herrmann, Martin
,
Lang, Stefanie C.
in
13/1
,
631/250/2152/2153
,
631/250/249/1313
2015
Immunglobulin G (IgG) sialylation represents a key checkpoint that determines the engagement of pro- or anti-inflammatory Fcγ receptors (FcγR) and the direction of the immune response. Whether IgG sialylation influences osteoclast differentiation and subsequently bone architecture has not been determined yet, but may represent an important link between immune activation and bone loss. Here we demonstrate that desialylated, but not sialylated, immune complexes enhance osteoclastogenesis
in vitro
and
in vivo
. Furthermore, we find that the Fc sialylation state of random IgG and specific IgG autoantibodies determines bone architecture in patients with rheumatoid arthritis. In accordance with these findings, mice treated with the sialic acid precursor N-acetylmannosamine (ManNAc), which results in increased IgG sialylation, are less susceptible to inflammatory bone loss. Taken together, our findings provide a novel mechanism by which immune responses influence the human skeleton and an innovative treatment approach to inhibit immune-mediated bone loss.
The IgG sugar moiety modulates the binding of immune complexes to their Fcγ receptors resulting in pro- or anti-inflammatory response. This study shows that IgG sialylation also affects osteoclastogenesis and bone mass in mice and humans, identifying a new link between bone and the immune system.
Journal Article
Ethanol consumption inhibits T FH cell responses and the development of autoimmune arthritis
by
Omata, Yasunori
,
Seubert, Silvia
,
Azizov, Vugar
in
Acetic Acid - metabolism
,
Acetic Acid - pharmacology
,
Alcohol Drinking - immunology
2020
Alcohol consumption is a consistent protective factor for the development of autoimmune diseases such as rheumatoid arthritis (RA). The underlying mechanism for this tolerance-inducing effect of alcohol, however, is unknown. Here we show that alcohol and its metabolite acetate alter the functional state of T follicular helper (T
) cells in vitro and in vivo, thereby exerting immune regulatory and tolerance-inducing properties. Alcohol-exposed mice have reduced Bcl6 and PD-1 expression as well as IL-21 production by T
cells, preventing proper spatial organization of T
cells to form T
:B cell conjugates in germinal centers. This effect is associated with impaired autoantibody formation, and mitigates experimental autoimmune arthritis. By contrast, T cell independent immune responses and passive models of arthritis are not affected by alcohol exposure. These data clarify the immune regulatory and tolerance-inducing effect of alcohol consumption.
Journal Article
Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice—From Bench to Bedside
by
Tauchi, Miyuki
,
Achenbach, Stephan
,
Urschel, Katharina
in
Coronary Artery Disease - metabolism
,
Coronary Artery Disease - pathology
,
Coronary Artery Disease - physiopathology
2021
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as “wall shear stress (WSS)”, and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Journal Article
The Involvement of Cx43 in JNK1/2-Mediated Endothelial Mechanotransduction and Human Plaque Progression
by
Tauchi, Miyuki
,
Botos, Balazs
,
Oshita, Kensuke
in
Atherosclerosis
,
Cell adhesion & migration
,
Cells, Cultured
2023
Atherosclerotic lesions preferentially develop at bifurcations, characterized by non-uniform shear stress (SS). The aim of this study was to investigate SS-induced endothelial activation, focusing on stress-regulated mitogen-activated protein kinases (MAPK) and downstream signaling, and its relation to gap junction proteins, Connexins (Cxs). Human umbilical vein endothelial cells were exposed to flow (“mechanical stimulation”) and stimulated with TNF-α (“inflammatory stimulation”). Phosphorylated levels of MAPKs (c-Jun N-terminal kinase (JNK1/2), extracellular signal-regulated kinase (ERK), and p38 kinase (p38K)) were quantified by flow cytometry, showing the activation of JNK1/2 and ERK. THP-1 cell adhesion under non-uniform SS was suppressed by the inhibition of JNK1/2, not of ERK. Immunofluorescence staining and quantitative real-time PCR demonstrated an induction of c-Jun and c-Fos and of Cx43 in endothelial cells by non-uniform SS, and the latter was abolished by JNK1/2 inhibition. Furthermore, plaque inflammation was analyzed in human carotid plaques (n = 40) using immunohistochemistry and quanti-gene RNA-assays, revealing elevated Cx43+ cell counts in vulnerable compared to stable plaques. Cx43+ cell burden in the plaque shoulder correlated with intraplaque neovascularization and lipid core size, while an inverse correlation was observed with fibrous cap thickness. Our results constitute the first report that JNK1/2 mediates Cx43 mechanoinduction in endothelial cells by atheroprone shear stress and that Cx43 is expressed in human carotid plaques. The correlation of Cx43+ cell counts with markers of plaque vulnerability implies its contribution to plaque progression.
Journal Article
ATP citrate lyase (ACLY)-dependent immunometabolism in mucosal T cells drives experimental colitis in vivo
by
Schumann, Michael
,
Prüß, Magdalena
,
Triantafyllopoulou, Antigoni
in
Animals
,
ATP Citrate (pro-S)-Lyase - metabolism
,
ATP citrate lyase
2024
ObjectiveMucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD.DesignACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models.ResultsACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis.ConclusionACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.
Journal Article
The Shear Stress–Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis
by
Büttner, Michael
,
Kuehn, Constanze
,
Tauchi, Miyuki
in
Atherosclerosis
,
Blood lipids
,
Cell adhesion & migration
2023
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Journal Article
Caveolin-1 Is Down-Regulated in Human Ovarian Carcinoma and Acts as a Candidate Tumor Suppressor Gene
by
Agoulnik, Alexander
,
Siebert, Paul D.
,
Wiechen, Kai
in
Biological and medical sciences
,
Carcinoma - genetics
,
Carcinoma - metabolism
2001
To identify novel markers differentially expressed in ovarian cancer
versus normal ovary, we hybridized microarrays with cDNAs derived from normal human ovaries and advanced stage ovarian carcinomas. This analysis revealed down-regulation of the
caveolin-1 gene (
CAV1) in ovarian carcinoma samples. Suppression of
CAV1 in ovarian carcinomas was confirmed using a tumor tissue array consisting of 68 cDNA pools from different matched human tumor and normal tissues. Immunohistochemistry demonstrated expression of caveolin-1 in normal and benign ovarian epithelial cells, but loss of expression in serous ovarian carcinomas. In low-grade carcinomas, redistribution of caveolin-1 from a membrane-associated pattern observed in normal epithelium to a cytoplasmic localization pattern was observed. No expression of caveolin-1 was detectable in four of six ovarian carcinoma cell lines investigated. In SKOV-3 and ES-2 carcinoma cells, which express high levels of the caveolin-1 protein, phosphorylation of the 22-kd caveolin-1 isoform was detected. Inhibition of both DNA methylation and histone deacetylation using 5-aza-2′deoxycytidine and Trichostatin A, respectively, relieves down-regulation of caveolin-1 in OAW42 and OVCAR-3 cells which is in part mediated by direct regulation at the mRNA level. Expression of
CAV1 in the ovarian carcinoma cell line OVCAR-3, resulted in suppression of tumor cell survival
in vitro, suggesting that the
CAV1 gene is likely to act as a tumor suppressor gene in human ovarian epithelium.
Journal Article
Down-Regulation of Caveolin-1, a Candidate Tumor Suppressor Gene, in Sarcomas
by
Agoulnik, Alexander
,
Schneider, Ulrike
,
Wiechen, Kai
in
Biological and medical sciences
,
Blotting, Western
,
Caveolin 1
2001
Caveolae are plasma membrane microdomains that have been implicated in the regulation of several intracellular signaling pathways. Previous studies suggest that caveolin-1, the main structural protein of caveolae, could function as a tumor suppressor. Caveolin-1 is highly expressed in terminally differentiated mesenchymal cells including adipocytes, endothelial cells, and smooth muscle cells. To study whether caveolin-1 is a possible tumor suppressor in human mesenchymal tumors, we have analyzed the expression using immunohistochemistry in normal mesenchymal tissues, 22 benign and 79 malignant mesenchymal tumors. Caveolin-1 was found to be expressed in fibromatoses, leiomyomas, hemangiomas, and lipomas at high levels comparable to normal mesenchymal tissues. The expression of caveolin-1 was slightly reduced in four of six well-differentiated liposarcomas and strongly reduced or lost in three of three fibrosarcomas, 17 of 20 leiomyosarcomas, 16 of 16 myxoid/round cell/pleomorphic liposarcomas, five of eight angiosarcomas, 15 of 18 malignant fibrous histiocytomas, and eight of eight synovial sarcomas. The immunohistochemical findings were confirmed by Western blot analysis in a number of tumors. High levels of both the 24-kd [α]- and the 21-kd [β]-isoform of caveolin-1 were detected in the nontumorigenic human fibroblast cell line IMR-90. In contrast, in HT-1080 human fibrosarcoma cells, caveolin-1 is strongly down-regulated. We show that the [α]-isoform of caveolin-1 is potently up-regulated in HT-1080 cells by inhibition of the mitogen-activated protein kinase-signaling pathway with the specific inhibitor PD 98059, whereas the specific inhibitor of DNA methylation 5-aza-2′-deoxycytidine only marginally up-regulates caveolin-1. In addition, re-expression of caveolin-1 in HT-1080 fibrosarcoma cells potently inhibited colony formation. From these we conclude that caveolin-1 is likely to act as a tumor suppressor gene in human sarcomas.
Journal Article