Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Doronkov, Denis"
Sort by:
Effects of the Orifice and Absorber Grid Designs on Coolant Mixing at the Inlet of an RITM-Type SMR Fuel Assembly
2025
This article presents the results of an experimental study on the hydrodynamics of the coolant at the inlet of the fuel assembly in the RITM reactor core. The importance of these studies stems from the significant impact that inlet flow conditions have on the flow structure within a fuel assembly. A significant variation in axial velocity and local flow rates can greatly affect the heat exchange processes within the fuel assembly, potentially compromising the safety of the core operation. The aim of this work was to investigate the effect of different designs of orifice inlet devices and integrated absorber grids on the flow pattern of the coolant in the rod bundle of the fuel assembly. To achieve this goal, experiments were conducted on a scaled model of the inlet section of the fuel assembly, which included all the structural components of the actual fuel assembly, from the orifice inlet device to the second spacer grids. The test model was scaled down by a factor of 5.8 from the original fuel assembly. Two methods were used to study the hydrodynamics: dynamic pressure probe measurements and the tracer injection technique. The studies were conducted in several sections along the length of the test model, covering its entire cross-section. The choice of measurement locations was determined by the design features of the test model. The loss coefficient (K) of the orifice inlet device in fully open and maximally closed positions was experimentally determined. The features of the coolant flow at the inlet of the fuel assembly were visualized using axial velocity plots in cross-sections, as well as concentration distribution plots for the injected tracer. The geometry of the inlet orifice device at the fuel assembly has a significant impact on the pattern of axial flow velocity up to the center of the fuel bundle, between the first and second spacing grids. Two zones of low axial velocity are created at the edges of the fuel element cover, parallel to the mounting plates, at the entrance to the fuel bundle. These unevennesses in the axial speed are evened out before reaching the second grid. The attachment plates of the fuel elements to the diffuser greatly influence the intensity and direction of flow mixing. A comparative analysis of the effectiveness of two types of integrated absorber grids was performed. The experimental results were used to justify design modifications of individual elements of the fuel assembly and to validate the hydraulic performance of new core designs. Additionally, the experimental data can be used to validate CFD codes.
Journal Article
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
2025
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed.
Journal Article
Modeling and Visualization of Coolant Flow in a Fuel Rod Bundle of a Small Modular Reactor
2024
This article presents the results of an experimental study of the coolant flow in a fuel rod bundle of a nuclear reactor fuel assembly of a small modular reactor for a small ground-based nuclear power plant. The aim of the work is to experimentally determine the hydrodynamic characteristics of the coolant flow in a fuel rod bundle of a fuel assembly. For this purpose, experimental studies were conducted in an aerodynamic model that included simulators of fuel elements, burnable absorber rods, spacer grids, a central displacer, and stiffening corners. During the experiments, the water coolant flow was modeled using airflow based on the theory of hydrodynamic similarity. The studies were conducted using the pneumometric method and the contrast agent injection method. The flow structure was visualized by contour plots of axial and tangential velocity, as well as the distribution of the contrast agent. During the experiments, the features of the axial flow were identified, and the structure of the cross-flows of the coolant was determined. The database obtained during the experiments can be used to validate CFD programs, refine the methods of thermal-hydraulic calculation of nuclear reactor cores, and also to justify the design of fuel assemblies.
Journal Article
CFD Modeling of Heat Exchanger with Small Bent Radius Coils Using Porous Media Model
2023
The efficiency of heat transfer in air-cooled heat exchangers of various industrial facilities depends on the flow rate of the coolant, its inlet temperature and ambient temperature. These parameters are transient and depend both on the features of the technological process and on weather conditions. One option for a compact design of heat exchangers is the use of close-packed coils with a small bending radius. In this case, heat transfer in the complex geometry of the annular space cannot be described by simple one-dimensional dependencies. To solve this problem, it is necessary to consider the three-dimensional spatial structure of the heat exchange surface. Since the size of the grid elements will be several orders of magnitude less than the size of the facility, the size of the computational grids for CFD modeling full-scale heat exchangers will be billions of finite volumes, and even on powerful supercomputers, the solution time will be about a month. One way to reduce computational costs is to use reduced order models, in which the computational domain is not modeled directly; instead, simplified models, such as a porous medium model, are used to describe it. However, such models require additional closing relations and coefficients that characterize the actual channel geometry. This paper presents a technique for creating a digital twin of a heat exchanger with small bend radius coils based on a porous medium model. The values of heat transfer coefficients and hydraulic resistance depend on the speed of air movement in the space between the coils. The calculated value of the thermal power obtained using the strengthened model was 529 kW, which corresponds to the passport data of 500 kW, with less than 6% deviation for the heat exchanger under study. This confirms the correctness of the calculation with accepted simplifications. The calculation time in this case was only a few minutes when using a personal computer. The developed numerical model allows for the resolution of performance characteristics based on the temperature of the cooled medium at the inlet, air temperature, and fan speed. Analyzing the different modes of turning on the cooling fans made it possible to determine the values of the thermal power when turning off the fans or reducing the number of revolutions.
Journal Article
Experimental investigation of the coolant flow in the VVER reactor core with TVSA fuel assemblies
by
Shvetsov, Yury K.
,
Gerasimov, Anton V.
,
Ryazanov, Anton V.
in
Air flow
,
Assemblies
,
Computational fluid dynamics
2021
The paper presents the results of an experimental study to investigate the coolant interaction in adjoining fuel assemblies in the VVER reactor core composed of TVSA-T and upgraded TVSA FAs. The processes of the in-core coolant flow were simulated in a test wind tunnel. The experiments were conducted using models representing different portions of the VVER reactor core fuel bundle and consisted in measuring the radial and axial airflow velocities in representative areas within the FAs and in the interassembly space. The results of the experiments can be translated to the full-scale conditions of the coolant flow with the use of the fluid dynamics simulation theory. The measurements were performed using a five-channel pressure-tube probe. The coolant flow pattern in different portions of the fuel bundle is represented by distribution diagrams and distribution maps for the radial and axial velocity vector components in the representative areas of the models. An analysis for the spatial distribution of the radial and axial velocity vector components has made it possible to obtain a detailed pattern of the coolant flow about the FA spacer, mixing and combined spacer grids of different designs. The accumulated database for the coolant flow in FAs of different designs forms the basis for the engineering justification of the VVER reactor core reliability and serviceability. The investigation results for the coolant interaction in adjoining TVSA FAs of different designs have been adopted for the practical use at JSC Afrikantov OKBM to estimate the heat-engineering reliability of the VVER reactor cores and have been included in the database for verification of computational fluid dynamics (CFD) codes and detailed by-channel calculation codes.
Journal Article