MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
Journal Article

Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR

2025
Request Book From Autostore and Choose the Collection Method
Overview
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed.

MBRLCatalogueRelatedBooks