Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Elshobary, Mostafa E."
Sort by:
Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance–nodulation–division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health.
Improvement of salt tolerance in Vicia faba (L.) seedlings: a comprehensive investigation of the effects of exogenous calcium chloride
Background This study investigated the effects of the different concentrations of CaCl 2 (10 and 15 mol m −3 ) on the growth, physiology, and cytological characteristics of salt-stressed Vicia faba (L.) seedlings grown under greenhouse conditions. Results Salinity stress (150 mol m −3 NaCl) had detrimental effects on all measured growth parameters, increased the micronucleus count number (MCN) by 26.6 micronuclei/1000 cells, decreased the mitotic index (MI) by 66.6%, and caused various chromosomal aberrations, nuclear alterations, and chromatin bridges in salt-stressed seedlings compared to the untreated plant. Nevertheless, the seed priming with CaCl 2 (10 and 15 mol m −3 ) significantly alleviated the toxic effects induced by salinity stress, improved growth parameters, total chlorophyll (TChl), proline, and total soluble sugar (TSS) contents in salt-stressed faba bean seedling compared with seedlings germinated from non-primed seeds. The antioxidative system of salt-stressed faba bean was highly stimulated by increasing the activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) enzymes as well as phenolics and flavonoids were increased in all salt-stressed seedlings germinated from seeds primed with CaCl 2 (10 and 15 mol m −3 ) indicating an improved tolerance of faba bean plant to salinity stress. Notably, the pretreatment with CaCl 2 (10 mol m −3 ) reduced the micronuclei number per 1000 cells by 91.3% and decreased the abnormality index by 58.9% more effectively than CaCl 2 (15 mol m −3 ). SDS-PAGE profiling revealed the presence of 16 proteins with different molecular weights, including two peptides, induced by CaCl 2 (10 mol m −3 ) in response to salinity stress. Conclusions This study showed that 10 mol m −3 CaCl 2 significantly improved salt tolerance in treated faba bean plants mitigating the antagonistic effects of salt stress on several physiological and cytological parameters.
Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species
Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.HighlightsThe abundance and diversity of the Rhodophyta species are threatened by global climate changes, rising sea levels, and stronger tidal waves.Shoreline hardening had direct impacts on the abundance and distribution of native species.Calcified species can be used as biomarker species for assessing climate changes.The morphological and 18S rRNA analysis confirmed the identified species.Only three species of red calcified algae viz. Corallina officinalis, Jania rubens, and Amphiroa rigida were recorded during seasons of autumn 2019−summer 2020.
Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma
Background Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. Results A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day −1 , with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. Conclusion The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.
Unraveling the physiological and ultrastructural responses of wheat to combat cobalt stress and the protective role of Jania rubens related to antioxidant defense and cellular integrity
Cobalt (Co), while beneficial in trace amounts for biological systems, can severely impact plant growth at elevated levels in contaminated soils. This study investigated the physiological, biochemical and subcellular effects of Co toxicity on wheat ( Triticum aestivum L.) and evaluated, for the first time, the protective potential of Jania rubens extract. The algal extract analysis demonstrated its rich content of amino acids, minerals, phytohormones, and fatty acids. Wheat seedlings were subjected to cobalt chloride (150 mM) irrigation, which was previously primed with either water or J. rubens extract. Co stress significantly impaired growth by reducing water content and essential nutrients (K, Mg, and Fe), leading to a 42.42 and 23.8% decrease, respectively, in root and shoot biomasses, a 9% reduction in photosynthetic efficiency, visible chlorosis, and root thickening. Stress exposure also induced oxidative damage, shown by 67.1% increase in hydrogen peroxide and a 170.1% rise in malondialdehyde content, accompanied by membrane leakage and reduced antioxidant enzyme activities. Ultrastructural analysis confirmed morphophysiological and biochemical disruptions at the cellular level. Priming with J. rubens extract significantly alleviated these effects by enhancing nutrient uptake, increasing root and shoot biomasses by 78.94% and 58.33%, respectively, reducing oxidative damage and maintaining cellular homeostasis. It also preserved chloroplast structure, nucleus, and cell wall microtubules, maintaining overall cellular integrity and antioxidant efficiency. Our findings demonstrate that Jania rubens extract offers a promising and novel biogenic strategy for enhancing wheat resilience to cobalt contamination through its nutritional and antioxidant properties.
Impact of Commercial Seaweed Liquid Extract (TAM®) Biostimulant and Its Bioactive Molecules on Growth and Antioxidant Activities of Hot Pepper (Capsicum annuum)
Bioactive molecules derived from seaweed extracts are revolutionary bio-stimulants used to enhance plant growth and increase yield production. This study evaluated the effectiveness of a commercially available seaweed liquid extract, namely, True-Algae-Max (TAM®), as a plant growth stimulant on nutritional, and antioxidant activity of Capsicum annuum. Three concentrations of TAM® (0.25, 0.5, and 1%) of various NPK: TAM® ratios were investigated via foliar spray, over 2017 and 2018 cultivation seasons, under greenhouse conditions. TAM® is rich in phytochemical compounds, such as ascorbic acid (1.66 mg g−1), phenolics (101.67 mg g−1), and flavonoids (2.60 mg g−1) that showed good antioxidant activity (54.52 mg g−1) and DPPH inhibition of 70.33%. Promoting measured parameter results stated the extensive potentiality of TAM® application, in comparison with conventional NPK treatment. Yield and composition of C. annuum were significantly improved in all TAM® treated groups, especially the TAM0.5% concentration, which resulted in maximum yield (4.23 Kg m−2) and significant amounts of profuse biological molecules like chlorophyll, ascorbic, phenolic compounds, flavonoids, and total nutrients. Compared to the NPK control treatments, C. annuum treated with TAM0.5% improved the total antioxidant activity of hot Pepper from 162.16 to 190.95 mg g−1. These findings indicate that the extract of seaweed can be used as an environmentally friendly, multi-functional biostimulant in the agricultural field for more sustainable production, in addition to reducing the use of hazardous synthetic fertilizers.
Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration
Background Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag 2 ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag 2 ONPs. Results A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524 , was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag 2 ONPS extracellularly. Plackett–Burman design and response surface approach was carried out to optimize the biosynthesis of Ag 2 ONPs (Bio-Ag 2 ONPs). Comprehensive characterization techniques, including UV–vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag 2 ONPS. Bio-Ag 2 ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1–25 µg mL −1 ). Notably, Bio-Ag 2 ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein ( Bax ), B-cell lymphoma 2 (Bcl-2), Caspase-3 ( Cas-3 ), and guardian of the genome ( P53 ). Conclusions These findings highlight the therapeutic potential of Bio-Ag 2 ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Commercial Seaweed Liquid Extract as Strawberry Biostimulants and Bioethanol Production
Seaweeds are increasingly intriguing as a sustainable source of bioactive compounds. They have applications in agriculture, fuels, feed, and food products. To become a cost-competitive product with zero waste, a biorefinery approach is applied, where several products are valorized at the same time. True-Algae-Max (TAM®) has been investigated for its ability to improve the yield and nutritional facts of a strawberry plant. Three concentrations of TAM (0, 50, and 100%) were examined by foliar spray in 2017 with 50% NPK chemical fertilizer. Results indicated that growth, yield, chlorophyll, and potassium content were significantly improved by TAM treatments. TAM50 % resulted in maximum root length, leaf area, plant fresh weight, fruit weight, and yield with an increase ranging from 10 to 110% compared to control. Compared to the NPK control, strawberries grown with TAM50% improved total soluble solids (TSS) from 7.58 to 10.12% and anthocyanin from 23.08 to 29.42 mg CGE 100 g−1. Noteworthily, this reduced total sugar, and total phenolics were boosted by TAM applications, while non-reducing sugar was reduced compared to control. On the other hand, whole seaweed biomass and TAM residuals were used for bioethanol production by acid scarification. The maximum bioethanol yield was observed in residual biomass (0.34 g g−1 dw), while the whole seaweed biomass showed only 0.20 g g−1 dw. These results proved the biorefinery concept of using seaweed extract as a biostimulator and bioethanol production.
Optimizing Phaeodactylum tricornutum cultivation: integrated strategies for enhancing biomass, lipid, and fucoxanthin production
Background Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum , focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes. Results Optimized medium (− 50%N%, + 50% P, Zero-Si, 2 g glycerol) under low-intensity blue light (100 μmol m⁻ 2 s⁻ 1 ) improved biomass to 1.6 g L⁻ 1 , with lipid productivity reaching 539.25 mg g⁻ 1 , while fucoxanthin increased to 20.44 mg g −1 . Total saturated fatty acid (ΣSFA) content in the optimized culture increased approximately 2.4-fold compared to the control F/2 medium. This change in fatty acid composition led to improved biodiesel properties, including a higher cetane number (59.18 vs. 56.04) and lower iodine value (53.96 vs 88.99 g I 2 /100 g oil). The optimized conditions also altered the biodiesel characteristics, such as kinematic viscosity, cloud point, and higher heating value. Conclusion Our optimization approach reveals the significant potential of P. tricornutum as a versatile microbial platform for biomass, lipid, and fucoxanthin production. The tailored cultivation strategy successfully enhanced biomass and lipid accumulation, with notable improvements in biodiesel properties through strategic nutrient and light regime manipulation. These findings demonstrate the critical role of precise cultivation conditions in optimizing microalgal metabolic performance for biotechnological applications.
Therapeutic Evaluation of Alginate from Brown Seaweeds: A Comparative Study of Turbinaria ornata and Hormophysa cuneiformis
Background: Alginate is a naturally occurring anionic polysaccharide extracted from brown marine algae and widely explored for biomedical applications due to its biocompatibility and functional versatility. This study aims to extract and compare alginates from two Red Sea brown algae, Turbinaria ornata (TA) and Hormophysa cuneiformis (HA), and to evaluate how structural differences influence their therapeutic properties. Methods: Alginate was isolated by sequential acid–alkaline extraction and characterized using FTIR, XRD, TGA, elemental analysis, and HPLC. Biological activities were assessed through antioxidant, anti-inflammatory, antidiabetic, neuroprotective, and hepatoprotective assays, supported by molecular docking and gene ontology interaction analysis. Results: Distinct physicochemical variations were observed between HA and TA. TA exhibited stronger antioxidant (IC50 = 25.89 µg/mL), anti-inflammatory (COX-1 IC50 = 69.61 µg/mL), antidiabetic (α-amylase IC50 = 45.14 µg/mL), and hepatoprotective activities (IC50 = 118.21 µg/mL), whereas HA displayed superior neuroprotective potential through butyrylcholinesterase inhibition (IC50 = 39.01 µg/mL). Molecular docking supported the in vitro findings by confirming interactions with key protein targets associated with oxidative stress and metabolic pathways. Conclusions: Structural variation between species-derived alginates directly impacts their biological activities. TA represents a promising candidate for metabolic and anti-inflammatory therapies, while HA may be more suitable for neuroprotective interventions. These results emphasize the importance of source-specific alginate selection for developing targeted pharmaceutical applications.