Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
36 result(s) for "Eusebio, Alexandre"
Sort by:
Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review
The increasing number of MRI studies focused on prodromal Parkinson’s Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Subthalamic stimulation breaks the balance between distal and axial signs in Parkinson’s disease
In Parkinson’s disease (PD), the effects of both L dopa and subthalamic deep brain stimulation (STN-DBS) are known to change cost-valuation. However, this was mostly studied through reward-effort task involving distal movements, while axial effort, less responsive to treatments, have been barely studied. Thus, our objective was to compare the influence of both L dopa and STN-DBS on cost-valuation between two efforts modalities: vowel production (as an example of axial movement) and hand squeezing (as an example of distal movement). Twelve PD patients were recruited to participate in this study. The task consisted in deciding whether to accept or reject trials based on a reward-effort trade-off. Participants performed two blocks with hand squeezing, and two with vowel production, in the four treatment conditions (L dopa On / Off ; STN-DBS On / Off ). We found that STN-DBS changed the ratio difference between hand and phonation efforts. Vowel production effort was estimated easier to perform with STN-DBS alone, and harder when associated with L dopa . The difference between hand and phonation efforts was correlated with quality of life in Off / Off and On L dopa alone conditions, and with impulsive assessment On STN-DBS alone. We highlighted that STN-DBS could introduce an imbalance between the actual motor impairments and their subjective costs. With this finding, we also suggest paying particular attention to the different treatment effects that should be expected for axial and distal movement dysfunctions.
Usefulness of thalamic beta activity for closed-loop therapy in essential tremor
A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV 2 /Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV 2 /Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV 2 /Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.
Early atypical signs and insula hypometabolism predict survival in multiple system atrophy
ObjectiveWe aim to search for predictors of survival among clinical and brain 18F-FDG positron emission tomography (PET) metabolic features in our cohort of patients with multiple system atrophy (MSA).MethodsWe included patients with a ‘probable’ MSA diagnosis for whom a clinical evaluation and a brain PET were performed early in the course of the disease (median 3 years, IQR 2–5). A retrospective analysis was conducted using standardised data collection. Brain PET metabolism was characterised using the Automated Anatomical Labelling Atlas. A Cox model was applied to look for factors influencing survival. Kaplan-Meier method estimated the survival rate. We proposed to develop a predictive ‘risk score’, categorised into low-risk and high-risk groups, using significant variables entered in multivariate Cox regression analysis.ResultsEighty-five patients were included. The overall median survival was 8 years (CI 6.64 to 9.36). Poor prognostic factors were orthostatic hypotension (HR=6.04 (CI 1.58 to 23.12), p=0.009), stridor (HR=3.41 (CI 1.31 to 8.87), p=0.012) and glucose PET hypometabolism in the left insula (HR=0.78 (CI 0.66 to 0.92), p=0.004). Good prognostic factors were time to diagnosis (HR=0.68 (CI 0.54 to 0.86), p=0.001) and use of selective serotonin reuptake inhibitor (SSRI) (HR=0.17 (CI 0.06 to 0.46), p<0.001). The risk score revealed a 5-year gap separating the median survival of the two groups obtained (5 years vs 10 years; HR=5.82 (CI 2.94 to 11.49), p<0.001).ConclusionThe clinical prognosis factors we have described support published studies. Here, we also suggest that brain PET is of interest for prognosis assessment and in particular in the search for left insula hypometabolism. Moreover, SSRIs are a potential drug candidate to slow the progression of the disease.
From metabolic connectivity to molecular connectivity: application to dopaminergic pathways
IntroductionThis study aims to reveal the feasibility and potential of molecular connectivity based on neurotransmission in comparison with the metabolic connectivity with an application to dopaminergic pathways. For this purpose, we propose to compare the neurotransmission connectivity findings using 123I-FP-CIT SPECT and 18F-FDOPA PET with the metabolic connectivity findings using 18F-FDG PET.Methods18F-FDG PET and 123I-FP-CIT SPECT images from 47 subjects and 18F-FDOPA PET images from 177 subjects, who had no neurological or psychiatric disorders, were studied. Interregional correlation analyses were performed at the group level to determine the midbrain’s connectivity via glucose metabolic rate using 18F-FDG PET and via dopaminergic binding potential using 123I-FP-CIT SPECT and 18F-FDOPA PET. SPM-T maps of each radiotracer were generated, and masks used to highlight the significant differences obtained among the imaging modalities and targets.ResultsThe three dopaminergic pathways (i.e., nigrostriatal, mesolimbic, and mesocortical) were identified by 18F-FDG PET (1599 voxels, with a Tmax value of 12.6), 123I-FP-CIT SPECT (1120 voxels, with Tmax value of 5.1), and 18F-FDOPA PET (6054 voxels, with Tmax value of 11.7) for a T voxel threshold of 5.10, 2.80, and 5.10, respectively. Using the same T voxel threshold of 5.10, 18F-FDOPA PET showed more specific findings than 18F-FDG PET with less voxels identified outside these pathways (− 9323 voxels), whereas no significant voxels were obtained with 123I-FP-CIT SPECT at this threshold.ConclusionThe present study illustrates the feasibility and interest in using molecular connectivity with 18F-FDOPA PET for dopaminergic pathways. Such analyses could be applied to specific diseases involving the dopaminergic system.
Personality dimensions of patients can change during the course of parkinson’s disease
Studies assessing personality dimensions by the \"Temperament and Character Inventory\" (TCI) have previously found an association between Parkinson's disease (PD) and lower Novelty Seeking and higher Harm Avoidance scores. Here, we aimed to describe personality dimensions of PD patients with motor fluctuations and compare them to a normative population and other PD populations. All PD patients awaiting Deep Brain Stimulation (DBS) answered the TCI before neurosurgery. Their results were compared to those of historical cohorts (a French normative population, a de novo PD population, and a PD population with motor fluctuations). Most personality dimensions of our 333 included PD patients with motor fluctuations who are candidates for DBS were different from those of the normative population and some were also different from those of the De Novo PD population, whereas they were similar to those of another population of PD patients with motor fluctuations. During the course of PD, personality dimensions can change in parallel with the development of motor fluctuations, either due to the evolution of the disease and/or dopaminergic treatments.
The Virtual Parkinsonian patient
This study investigates the influence of the pharmacological nigrostriatal dopaminergic stimulation on the entire brain by analyzing EEG and deep electrodes, placed near the subthalamic nuclei, from 10 Parkinsonian patients before (OFF) and after (ON) L-Dopa administration. We characterize large-scale brain dynamics as the spatio-temporal spreading of aperiodic bursts. We then simulate the effects of L-Dopa utilizing a novel neural-mass model that includes the local dopamine concentration. Whole-brain dynamics are simulated for different dopaminergic tones, generating predictions for the expected dynamics, to be compared with empirical EEG and deep electrode data. To this end, we invert the model and infer the most likely dopaminergic tone from empirical data, correctly identifying a higher Dopaminergic tone in the ON-state, and a lower dopaminergic tone in the OFF-state, for each patient. In conclusion, we successfully infer the dopaminergic tone by integrating anatomical and functional knowledge into physiological predictions, using solid ground truth to validate our findings.
L-Dopa-induced changes in aperiodic bursts dynamics relate to individual clinical improvement in Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative disease characterized by severe motor symptoms, transiently alleviated by medication (e.g. levodopa), and widespread brain activity alterations that remain poorly understood at a large scale level. To address this issue, we used resting-state STN-DBS and motor EEG data from 11 PD patients before and after levodopa treatment. Neuronal avalanches, i.e., brief, widespread bursts of activities, were detected and compared across the two conditions. Interestingly, we noted shorter and smaller avalanches in the OFF-condition and fewer, longer, and larger avalanches in the ON-condition. We then computed the avalanche transition matrices to track the contact-wise patterns of avalanche spread. We found a significantly higher probability of avalanche spread within and between the STN and motor cortex in the ON-condition. Furthermore, increased propagation of avalanches correlated with clinical improvement. Our study identifies potential biomarkers for electrophysiological changes in PD through cross-modality assessment of aperiodic activities.
Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients
BackgroundAlthough deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective therapeutic intervention in severe Parkinson's disease, its mechanism of action remains unclear. One possibility is that DBS suppresses local pathologically synchronised oscillatory activity.MethodsTo explore this, the authors recorded from DBS electrodes implanted in the STN of 16 patients with Parkinson's disease during simultaneous stimulation (pulse width 60 μs; frequency 130 Hz) of the same target using a specially designed amplifier. The authors analysed data from 25 sides.ResultsThe authors found that DBS progressively suppressed peaks in local field potential activity at frequencies between 11 and 30 Hz as voltage was increased beyond a stimulation threshold of 1.5 V. Median peak power had fallen to 54% of baseline values by a stimulation intensity of 3.0 V.ConclusionThe findings suggest that DBS can suppress pathological 11–30 Hz activity in the vicinity of stimulation in patients with Parkinson's disease. This suppression occurs at stimulation voltages that are clinically effective.
Safety and efficacy of subcutaneous night-time only apomorphine infusion to treat insomnia in patients with Parkinson's disease (APOMORPHEE): a multicentre, randomised, controlled, double-blind crossover study
Insomnia is a frequent complaint of patients with Parkinson's disease, and it negatively affects quality of life. Drugs that improve both sleep and parkinsonism would be of major benefit to patients with Parkinson's disease-related insomnia. We aimed to test the safety and efficacy of subcutaneous night-time only apomorphine infusion in patients with Parkinson's disease and insomnia. We did a randomised, multicentre, double-blind, placebo-controlled, crossover trial in 11 expert centres in Parkinson's disease and sleep centres in France. Participants aged 35–90 years with fluctuating Parkinson's disease and moderate to severe insomnia (Insomnia Severity Index score ≥15) were randomly assigned to either first receive night-time subcutaneous apomorphine (up to 5 mg/h) or matching placebo. Randomisation was done using a computer-generated plan in blocks of four, stratified by centre. This first intervention was followed by a 14-night washout period, then crossover to the other intervention. The treatment periods consisted of a 10-night titration phase followed by a 7-night fixed-dose phase. The dose was adjusted during the titration phase on the basis of a daily telephone call assessing sleep quality and treatment tolerability. The primary efficacy endpoint was the difference in Parkinson's disease sleep scale (PDSS) scores from the beginning to the end of each treatment period. Analysis was done on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT02940912. Between Jan 31, 2017, and Jan 29, 2021, 46 participants were enrolled. 25 (54%) patients were randomly assigned to receive apomorphine first and 21 (46%) patients to receive placebo first. Mean change in PDSS score was significantly greater with night-time apomorphine infusion (15·18 [SD 24·34]) compared with placebo (5·23 [21·52]; treatment effect 9·95 [95% CI 0·88–19·03]; p=0·041). Adverse events were reported in 25 (54%) participants during the apomorphine period and in 17 (37%) participants during the placebo period (p=0·16). Apomorphine was associated with more frequent dizziness than was placebo (seven [15%] vs 0; p=0·041). Subcutaneous night-time only apomorphine infusion improved sleep disturbances according to difference on PDSS score, with an overall safety profile consistent with previous studies in Parkinson's disease. This treatment might be useful to manage sleep disturbances in patients with advanced Parkinson's disease and moderate to severe insomnia. Orkyn and Aguettant Pharma. For the French translation of the abstract see Supplementary Materials section.