Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
145 result(s) for "Fang, Jia-You"
Sort by:
Current pathogenic Escherichia coli foodborne outbreak cases and therapy development
Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli ( E. coli ) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years’ worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli /enterohemorrhagic E. coli (STEC/EHEC), Shigella /enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.
Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers
Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs. [Display omitted] •SLNs are nanosystems for the delivery of drugs with controlled release kinetics.•We highlight the recent progress in the study of oral SLNs for disease treatment.•SLNs are developed by solid lipids and emulsifiers generally recognized as safe.•Both drugs and natural compounds are suitable to be orally delivered by SLNs.
Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs
Psoriasis is a chronic inflammatory skin disease and topical therapy remains a key role for treatment. The aim of this study is to evaluate the influence of psoriasis-like lesions on the cutaneous permeation of anti-psoriatic drugs. We first set up imiquimod-induced dermatitis in mice that closely resembles human psoriasis lesions. The development of the lesions is based on the IL-23/IL17A axis for phenotypical and histological characteristics. Four drugs, 5-aminolevulinic acid (ALA), tacrolimus, calcipotriol, and retinoic acid, were used to evaluate percutaneous absorption. The most hydrophilic molecule, ALA, revealed the greatest enhancement on skin absorption after imiquimod treatment. Imiquimod increased the skin deposition and flux of ALA by 5.6 to 14.4-fold, respectively, compared to normal skin. The follicular accumulation of ALA was also increased 3.8-fold. The extremely lipophilic drug retinoic acid showed a 1.7- and 3.8-fold increase in skin deposition and flux, respectively. Tacrolimus flux was enhanced from 2 to 21 μg/cm2/h by imiquimod intervention. However, imiquimod did not promote skin deposition of this macrolide. The lipophilicity, but not the molecular size, dominated drug permeation enhancement by psoriatic lesions. The in vivo percutaneous absorption of ALA and rhodamine B examined by confocal microscopy confirmed the deficient resistance of epidermal barrier for facilitating cutaneous delivery of drugs via psoriasis-like skin. We established the topical delivery profiles of anti-psoriatic drugs via imiquimod-treated psoriasis-like skin.
Apoptotic or Antiproliferative Activity of Natural Products against Keratinocytes for the Treatment of Psoriasis
Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products’ structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compounds that were isolated from natural resources, especially plants. Most of these studies focus on evaluation through an in vitro keratinocyte model and an in vivo psoriasis-like animal model. Topical delivery is the major route for the in vivo or clinical administration of these natural products. The potential use of antiproliferative phytomedicine on hyperproliferative keratinocytes suggests a way forward for generating advances in the field of psoriasis therapy.
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.
Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins
The chemical environment and enzymes in the gastrointestinal (GI) membrane limit the oral absorption of some vitamins. The GI epithelium also contributes to the poor permeability of numerous antioxidant agents. Thus, lipophilic vitamins do not readily dissolve in the GI tract, and therefore they have low bioavailability. Nanomedicine has the potential to improve the delivery efficiency of oral vitamins. In particular, the use of lipid nanocarriers for certain vitamins that are administered orally can provide improved solubility, chemical stability, epithelium permeability and bioavailability, half-life, nidus targeting, and fewer adverse effects. These lipid nanocarriers include self-emulsifying drug delivery systems (SEDDSs), nanoemulsions, microemulsions, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs). The use of nontoxic excipients and sophisticated material engineering of lipid nanosystems allows for control of the physicochemical properties of the nanoparticles and improved GI permeation via mucosal or lymphatic transport. In this review, we highlight recent progress in the development of lipid nanocarriers for vitamin delivery. In addition, the same lipid nanocarriers used for vitamins may also be effective as carriers of vitamin derivatives, and therefore enhance their oral bioavailability. One example is the incorporation of d-α-tocopheryl polyethylene glycol succinate (TPGS) as the emulsifier in lipid nanocarriers to increase the solubility and inhibit P-glycoprotein (P-gp) efflux. We also survey the concepts and discuss the mechanisms of nanomedical techniques that are used to develop vitamin-loaded nanocarriers.
Liquid crystalline assembly for potential combinatorial chemo-herbal drug delivery to lung cancer cells
Lung cancer is the most common cancer and the leading cause of total deaths worldwide. Its classified into two major types including non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) based on the origin of abnormal lung cells as well as the smoking status of the patient. NSCLC is the most common and aggressive type of lung cancer representing 80%-85% of all cases. The aim of the study was to present lyotropic liquid crystalline nanoparticles (LCNPs) as promising carriers for co-delivery of the chemotherapeutic agent, pemetrexed (PMX) and the herbal drug, resveratrol (RSV) for effective lung cancer management. The proposed PMX-RSV-LCNPs were prepared by hydrotrope method. Hydrophobic ion pairing with cetyl trimethyl ammonium bromide (CTAB) was implemented to increase the encapsulation efficiency of the hydrophilic PMX up to 95%±3.01%. The tailored PMX-RSV-LCNPs exhibited a particle size of 173±0.26 nm and biphasic release pattern with a relatively initial burst release within first 3-4 hour followed by sustained release up to 24 hours. Moreover, PMX-RSV-LCNPs manifested superior concentration and time dependent cytotoxicity profile against A549 lung cancer cells with IC 4.0628 µg/mL. Besides, the enhanced cellular uptake profile based on bioadhesive properties of glyceryl monoolein (GMO) as well as energy independent (cholesterol dependent) pattern. In-vivo evaluations against urethane induced lung cancer bearing mice demonstrated the potentiality of PMX-RSV-LCNPs in tumor growth inhibition via inhibition of angiogenesis and induction of apoptosis. The results were supported by histopathological analysis and immunohistochemical Ki67 staining. Moreover, PMX-RSV-LCNPs displayed a promising safety profile via attenuating nephro- and hepatotoxicity. PMX-RSV-LCNPs elaborated in the current study hold a great promise for lung cancer treatment.
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.