Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
14
result(s) for
"Farnaghi, Mahdi"
Sort by:
An ecological study of chronic kidney disease in five Mesoamerican countries: associations with crop and heat
by
Mansourian, Ali
,
Petzold, Max
,
Jakobsson, Kristina
in
Agricultural management
,
Agriculture
,
Arbetsmedicin och miljömedicin
2021
Background
Mesoamerica is severely affected by an epidemic of Chronic Kidney Disease of non-traditional origin (CKDnt), an epidemic with a marked variation within countries. We sought to describe the spatial distribution of CKDnt in Mesoamerica and examine area-level crop and climate risk factors.
Methods
CKD mortality or hospital admissions data was available for five countries: Mexico, Guatemala, El Salvador, Nicaragua and Costa Rica and linked to demographic, crop and climate data. Maps were developed using Bayesian spatial regression models. Regression models were used to analyze the association between area-level CKD burden and heat and cultivation of four crops: sugarcane, banana, rice and coffee.
Results
There are regions within each of the five countries with elevated CKD burden. Municipalities in hot areas and much sugarcane cultivation had higher CKD burden, both compared to equally hot municipalities with lower intensity of sugarcane cultivation and to less hot areas with equally intense sugarcane cultivation, but associations with other crops at different intensity and heat levels were not consistent across countries.
Conclusion
Mapping routinely collected, already available data could be a first step to identify areas with high CKD burden. The finding of higher CKD burden in hot regions with intense sugarcane cultivation which was repeated in all five countries agree with individual-level studies identifying heavy physical labor in heat as a key CKDnt risk factor. In contrast, no associations between CKD burden and other crops were observed.
Journal Article
Dynamic Spatio-Temporal Tweet Mining for Event Detection: A Case Study of Hurricane Florence
2020
Extracting information about emerging events in large study areas through spatiotemporal and textual analysis of geotagged tweets provides the possibility of monitoring the current state of a disaster. This study proposes dynamic spatio-temporal tweet mining as a method for dynamic event extraction from geotagged tweets in large study areas. It introduces the use of a modified version of ordering points to identify the clustering structure to address the intrinsic heterogeneity of Twitter data. To precisely calculate the textual similarity, three state-of-the-art text embedding methods of Word2vec, GloVe, and FastText were used to capture both syntactic and semantic similarities. The impact of selected embedding algorithms on the quality of the outputs was studied. Different combinations of spatial and temporal distances with the textual similarity measure were investigated to improve the event detection outcomes. The proposed method was applied to a case study related to 2018 Hurricane Florence. The method was able to precisely identify events of varied sizes and densities before, during, and after the hurricane. The feasibility of the proposed method was qualitatively evaluated using the Silhouette coefficient and qualitatively discussed. The proposed method was also compared to an implementation based on the standard density-based spatial clustering of applications with noise algorithm, where it showed more promising results.
Journal Article
A Varied Density-based Clustering Approach for Event Detection from Heterogeneous Twitter Data
2019
Extracting the latent knowledge from Twitter by applying spatial clustering on geotagged tweets provides the ability to discover events and their locations. DBSCAN (density-based spatial clustering of applications with noise), which has been widely used to retrieve events from geotagged tweets, cannot efficiently detect clusters when there is significant spatial heterogeneity in the dataset, as it is the case for Twitter data where the distribution of users, as well as the intensity of publishing tweets, varies over the study areas. This study proposes VDCT (Varied Density-based spatial Clustering for Twitter data) algorithm that extracts clusters from geotagged tweets by considering spatial heterogeneity. The algorithm employs exponential spline interpolation to determine different search radiuses for cluster detection. Moreover, in addition to spatial proximity, textual similarities among tweets are also taken into account by the algorithm. In order to examine the efficiency of the algorithm, geotagged tweets collected during a hurricane in the United States were used for event detection. The output clusters of VDCT have been compared to those of DBSCAN. Visual and quantitative comparison of the results proved the feasibility of the proposed method.
Journal Article
Spatial analysis of HIV-TB co-clustering in Uganda
by
Aturinde, Augustus
,
Pilesjö, Petter
,
Mansourian, Ali
in
Circumcision
,
Cluster Analysis
,
Coinfection - diagnosis
2019
Background
Tuberculosis (TB) is the leading cause of death for individuals infected with Human immunodeficiency virus (HIV). Conversely, HIV is the most important risk factor in the progression of TB from the latent to the active status. In order to manage this double epidemic situation, an integrated approach that includes HIV management in TB patients was proposed by the World Health Organization and was implemented in Uganda (one of the countries endemic with both diseases). To enable targeted intervention using the integrated approach, areas with high disease prevalence rates for TB and HIV need to be identified first. However, there is no such study in Uganda, addressing the joint spatial patterns of these two diseases.
Methods
This study uses global Moran’s index, spatial scan statistics and bivariate global and local Moran’s indices to investigate the geographical clustering patterns of both diseases, as individuals and as combined. The data used are TB and HIV case data for 2015, 2016 and 2017 obtained from the District Health Information Software 2 system, housed and maintained by the Ministry of Health, Uganda.
Results
Results from this analysis show that while TB and HIV diseases are highly correlated (55–76%), they exhibit relatively different spatial clustering patterns across Uganda. The joint TB/HIV prevalence shows consistent hotspot clusters around districts surrounding Lake Victoria as well as northern Uganda. These two clusters could be linked to the presence of high HIV prevalence among the fishing communities of Lake Victoria and the presence of refugees and internally displaced people camps, respectively. The consistent cold spot observed in eastern Uganda and around Kasese could be explained by low HIV prevalence in communities with circumcision tradition.
Conclusions
This study makes a significant contribution to TB/HIV public health bodies around Uganda by identifying areas with high joint disease burden, in the light of TB/HIV co-infection. It, thus, provides a valuable starting point for an informed and targeted intervention, as a positive step towards a TB and HIV-AIDS free community.
Journal Article
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
by
Jamali, Sadegh
,
Ahooei Nezhad, Seyede Shahrzad
,
Khoshelham, Kourosh
in
Accuracy
,
best scanline determination (BSD)
,
Collinearity
2024
Working with pushbroom imagery in photogrammetry and remote sensing presents a fundamental challenge in object-to-image space transformation. For this transformation, accurate estimation of Exterior Orientation Parameters (EOPs) for each scanline is required. To tackle this challenge, Best Scanline Search or Determination (BSS/BSD) methods have been developed. However, the current BSS/BSD methods are not efficient for real-time applications due to their complex procedures and interpolations. This paper introduces a new non-iterative BSD method specifically designed for line-type pushbroom images. The method involves simulating a pair of sets of points, Simulated Control Points (SCOPs), and Simulated Check Points (SCPs), to train and test a Multilayer Perceptron (MLP) model. The model establishes a strong relationship between object and image spaces, enabling a direct transformation and determination of best scanlines. This proposed method does not rely on the Collinearity Equation (CE) or iterative search. After training, the MLP model is applied to the SCPs for accuracy assessment. The proposed method is tested on ten images with diverse landscapes captured by eight sensors, exploiting five million SCPs per image for statistical assessments. The Root Mean Square Error (RMSE) values range between 0.001 and 0.015 pixels across ten images, demonstrating the capability of achieving the desired sub-pixel accuracy within a few seconds. The proposed method is compared with conventional and state-of-the-art BSS/BSD methods, indicating its higher applicability regarding accuracy and computational efficiency. These results position the proposed BSD method as a practical solution for transforming object-to-image space, especially for real-time applications.
Journal Article
Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation
by
Faramarzi, Hassan
,
Pourghasemi, Hamid Reza
,
Hosseini, Seyd Mohsen
in
agents fire
,
Algorithms
,
Analytic hierarchy process
2021
Forest fires are a major environmental issue because they are increasing as a consequence of climate change and global warming. The present study was aimed to model forest fire hazard using the ordered weighted averaging (OWA) multi-criteria evaluation algorithm and to determine the role of human, climatic, and environmental factors in forest fire occurrence within the Golestan National Park (GNP), Iran. The database used for the present study was created according to daily classification of climate changes, environmental basic maps, and human-made influential forest fire factors. In the study area, the forest fires were registered using GPS. Expert opinions were applied through the analytic hierarchy process (AHP) to determine the importance of effective factors. Fuzzy membership functions were used to standardize the thematic layers. The fire risk maps were prepared using different OWA scenarios for man-made, climatic, and environment factors. The findings revealed that roads (weight = 0.288), rainfalls (weight = 0.288), and aspects (weight = 0.255) are the major factors that contribute to the occurrence of forest fire in the study area. The forest fire maps prepared from different scenarios were validated using the relative operating characteristic (ROC) curve. Values of forest fire maps acquired from scenarios of human, environment, climate factors and their combination were 0.87, 0.731, 0.773 and 0.819, respectively.
Journal Article
Multi-Agent Planning for Automatic Geospatial Web Service Composition in Geoportals
by
Farnaghi, Mahdi
,
Mansourian, Ali
in
Algorithms
,
Artificial intelligence
,
automatic web service composition
2018
Automatic composition of geospatial web services increases the possibility of taking full advantage of spatial data and processing capabilities that have been published over the internet. In this paper, a multi-agent artificial intelligence (AI) planning solution was proposed, which works within the geoportal architecture and enables the geoportal to compose semantically annotated Open Geospatial Consortium (OGC) Web Services based on users’ requirements. In this solution, the registered Catalogue Service for Web (CSW) services in the geoportal along with a composition coordinator component interact together to synthesize Open Geospatial Consortium Web Services (OWSs) and generate the composition workflow. A prototype geoportal was developed, a case study of evacuation sheltering was implemented to illustrate the functionality of the algorithm, and a simulation environment, including one hundred simulated OWSs and five CSW services, was used to test the performance of the solution in a more complex circumstance. The prototype geoportal was able to generate the composite web service, based on the requested goals of the user. Additionally, in the simulation environment, while the execution time of the composition with two CSW service nodes was 20 s, the addition of new CSW nodes reduced the composition time exponentially, so that with five CSW nodes the execution time reduced to 0.3 s. Results showed that due to the utilization of the computational power of CSW services, the solution was fast, horizontally scalable, and less vulnerable to the exponential growth in the search space of the AI planning problem.
Journal Article
Integrating agent-based disease, mobility and wastewater models for the study of the spread of communicable diseases
by
DelaPaz-Ruíz, Néstor
,
Abdulkareem, Sheheen A.
,
Augustijn, Ellen-Wien
in
Agent-based model
,
Communicable Diseases - epidemiology
,
COVID-19
2025
Wastewater-based epidemiology was utilized during the COVID-19 outbreak to monitor the circulation of SARS-CoV-2, the virus causing this disease. However, this approach is limited by the need for additional methods to accurately translate virus concentrations in wastewater to disease-positive human counts. Combined modelling of COVID-19 disease cases and the concentration of its causative virus, SARS-CoV-2, in wastewater will necessarily deepen our understanding. However, this requires addressing the technical differences between disease, population mobility and wastewater models. To that end, we developed an integrated Agent-Based Model (ABM) that facilitates analysis in space and time at various temporal resolutions, including disease spread, population mobility and wastewater production, while also being sufficiently generic for different types of infectious diseases or pathogens. The integrated model replicates the epidemic curve for COVID-19 and can estimate the daily infections at the household level, enabling the monitoring of the spatial patterns of infection intensity. Additionally, the model allows monitoring the estimated production of infected wastewater over time and spatially across the sewage and treatment plant. The model addresses differences between resolutions and can potentially support Early Warning Systems (EWS) for future pandemics.
Journal Article
Establishing spatially-enabled health registry systems using implicit spatial data pools: case study – Uganda
by
Aturinde, Augustus
,
Pilesjö, Petter
,
Mansourian, Ali
in
Analysis
,
Case studies
,
Data Collection
2019
Background
Spatial epidemiological analyses primarily depend on spatially-indexed medical records. Some countries have devised ways of capturing patient-specific spatial details using ZIP codes, postcodes or personal numbers, which are geocoded. However, for most resource-constrained African countries, the absence of a means to capture patient resident location as well as inexistence of spatial data infrastructures makes capturing of patient-level spatial data unattainable.
Methods
This paper proposes and demonstrates a creative low-cost solution to address the issue. The solution is based on using interoperable web services to capture fine-scale locational information from existing “spatial data pools” and link them to the patients’ information.
Results
Based on a case study in Uganda, the paper presents the idea and develops a prototype for a spatially-enabled health registry system that allows for fine-level spatial epidemiological analyses.
Conclusion
It has been shown and discussed that the proposed solution is feasible for implementation and the collected spatially-indexed data can be used in spatial epidemiological analyses to identify hotspot areas with elevated disease incidence rates, link health outcomes to environmental exposures, and generally improve healthcare planning and provisioning.
Journal Article
Predictive risk mapping of human leptospirosis using support vector machine classification and multilayer perceptron neural network
by
Pilesjö, Petter
,
Mansourian, Ali
,
Farnaghi, Mahdi
in
Earth and Related Environmental Sciences
,
Environment
,
Geographical information systems
2019
Leptospirosis is a zoonotic disease found wherever human is in direct or indirect contact with contaminated water and environment. Considering the increasing number of cases of this disease in the northern part of Iran, identifying areas characterized by high disease incidence risk can help policy-makers develop strategies to prevent its further spread. This study presents an approach for generating predictive risk maps of leptospirosis using spatial statistics, environmental variables and machine learning. Moran's I demonstrated that the distribution of leptospirosis cases in the study area in Iran was highly clustered. Pearson’s correlation analysis was conducted to examine the type and strength of relationships between climate and topographical factors and incidence of the disease. To handle the complex and nonlinear problems involved, machine learning based on the support vector machine classification algorithm and multilayer perceptron neural network was exploited to generate annual and monthly predictive risk maps of leptospirosis distribution. Performance of both models was evaluated using receiver operating characteristic curve and Kappa coefficient. The output results demonstrated that both models are adequate for the prediction of the probability of leptospirosis incidence.
Journal Article