MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Journal Article

Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron

2024
Request Book From Autostore and Choose the Collection Method
Overview
Working with pushbroom imagery in photogrammetry and remote sensing presents a fundamental challenge in object-to-image space transformation. For this transformation, accurate estimation of Exterior Orientation Parameters (EOPs) for each scanline is required. To tackle this challenge, Best Scanline Search or Determination (BSS/BSD) methods have been developed. However, the current BSS/BSD methods are not efficient for real-time applications due to their complex procedures and interpolations. This paper introduces a new non-iterative BSD method specifically designed for line-type pushbroom images. The method involves simulating a pair of sets of points, Simulated Control Points (SCOPs), and Simulated Check Points (SCPs), to train and test a Multilayer Perceptron (MLP) model. The model establishes a strong relationship between object and image spaces, enabling a direct transformation and determination of best scanlines. This proposed method does not rely on the Collinearity Equation (CE) or iterative search. After training, the MLP model is applied to the SCPs for accuracy assessment. The proposed method is tested on ten images with diverse landscapes captured by eight sensors, exploiting five million SCPs per image for statistical assessments. The Root Mean Square Error (RMSE) values range between 0.001 and 0.015 pixels across ten images, demonstrating the capability of achieving the desired sub-pixel accuracy within a few seconds. The proposed method is compared with conventional and state-of-the-art BSS/BSD methods, indicating its higher applicability regarding accuracy and computational efficiency. These results position the proposed BSD method as a practical solution for transforming object-to-image space, especially for real-time applications.