Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Fragkos, Panagiotis"
Sort by:
Decarbonizing the International Shipping and Aviation Sectors
The Paris Agreement requires a drastic reduction of global carbon emissions towards the net zero transition by mid-century, based on the large-scale transformation of the global energy system and major emitting sectors. Aviation and shipping emissions are not on a trajectory consistent with Paris goals, driven by rapid activity growth and the lack of commercial mitigation options, given the challenges for electrification of these sectors. Large-scale models used for mitigation analysis commonly do not capture the specificities and emission reduction options of international shipping and aviation, while bottom-up sectoral models do not represent their interlinkages with the entire system. Here, I use the global energy system model PROMETHEUS, enhanced with a detailed representation of the shipping and aviation sector, to explore transformation pathways for these sectors and their emission, activity, and energy mix impacts. The most promising alternative towards decarbonizing these sectors is the large-scale deployment of low-carbon fuels, including biofuels and synthetic clean fuels, accompanied by energy efficiency improvements. The analysis shows that ambitious climate policy would reduce the trade of fossil fuels and lower the activity and the mitigation effort of international shipping, indicating synergies between national climate action and international transport.
Assessing the Role of Carbon Capture and Storage in Mitigation Pathways of Developing Economies
The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.
Macro-economic analysis of green growth policies: the role of finance and technical progress in Italian green growth
The transition to a low-carbon economy is a complex process that, from a technical perspective, requires coordination of different market players, significant technology advancements and sufficient financial resources. The transition to a low-carbon energy system is a capital intensive process. Different technological options at different scales and different time frames will be required for the successful transition to a low-carbon energy system. The economic impact on countries that transform their energy system depends on a multitude of factors including their energy system profile, the access to low-cost financial resources, whether they are market leaders in the production of clean energy technology and their ability to assimilate knowledge that is produced elsewhere. In this study, we use a large scale applied CGE model to compute the macroeconomic implications of the investments required to reduce by 76% as compared to 1990 levels the GHG emissions of the Italian energy system within a context of global concerted GHG mitigation action. The focus of the analysis has been on the Italian economy and energy system as Italy is both an equipment manufacturer, its energy system is largely based on fossil fuels and its financial system is currently under pressure following the elevation of public debt and deficits. The model-based results suggest that the Italian economy can benefit from the low-carbon transition in the coming decades in case Italian firms and households have access to low-cost financial resources, Italian manufacturers acquire market shares in the production of clean energy technologies and technological progress is rapid driven by innovation and economies of scale. The average annual GDP growth of Italy in the period 2015–2050 can be 1.3% in the case that Italy reduces drastically its GHG emissions and the associated cumulative expenditures sum up to one trillion euro.
The effect of differentiating costs of capital by country and technology on the European energy transition
Cost of capital is an important driver of investment decisions, including the large investments needed to execute the low-carbon energy transition. Most models, however, abstract from country or technology differences in cost of capital and use uniform assumptions. These might lead to biased results regarding the transition of certain countries towards renewables in the power mix and potentially to a sub-optimal use of public resources. In this paper, we differentiate the cost of capital per country and technology for European Union (EU) countries to more accurately reflect real-world market conditions. Using empirical data from the EU, we find significant differences in the cost of capital across countries and energy technologies. Implementing these differentiated costs of capital in an energy model, we show large implications for the technology mix, deployment, carbon emissions and electricity system costs. Cost-reducing effects stemming from financing experience are observed in all EU countries and their impact is larger in the presence of high carbon prices. In sum, we contribute to the development of energy system models with a method to differentiate the cost of capital for incumbent fossil fuel technologies as well as novel renewable technologies. The increasingly accurate projections of such models can help policymakers engineer a more effective and efficient energy transition.
Computational Analysis of a Wind Turbine Blade for Different Advanced Materials
As wind turbine rotors grow in size and Greece advances its offshore wind energy initiatives, this study analyzes the structural behavior of offshore wind turbine blades using fluid–structure interaction (FSI) methods. The blade skin and shear webs of the International Energy Agency (IEA) 15 MW wind turbine, assumed to operate in the Aegean Sea, are examined. Computational fluid dynamics (CFD) simulations are conducted for two steady-state wind speeds based on local weather data, followed by finite element analysis (FEA) to assess advanced materials in terms of strength, cost, and carbon footprint. This is the first study to evaluate bamboo- and basalt-based composite materials under Greek offshore wind conditions using FSI methods. Bamboo composites are affordable and sustainable, but their limited durability reduces their viability in offshore environments. The simulation results indicate that using bamboo composites as blade skin may lead to damage due to the excessive loads on offshore wind turbine blades. In contrast, basalt fiber composites are also environmentally viable and offer superior strength, corrosion resistance, and long-term performance, making them a promising alternative. However, their naturally high density may impact the overall weight of the structure. This study concludes that offshore wind technology in the Aegean is feasible but remains costly and environmentally demanding. The further development and adoption of basalt fibers may serve as a gateway to more environmentally friendly offshore structures.
Electricity- and hydrogen-driven energy system sector-coupling in net-zero CO2 emission pathways
Electricity- and hydrogen-based sector coupling contributes to realizing the transition towards greenhouse gas neutrality in the European energy system. Energy system and integrated assessment models show that, to follow pathways compatible with the European policy target of net-zero greenhouse gas emissions by 2050, large amounts of renewable electricity and H 2 need to be generated, mostly by scaling-up wind and solar energy production capacity. With a set of such models, under jointly adopted deep decarbonisation scenario assumptions, we here show that the ensuing direct penetration of electricity and H 2 in final energy consumption may rise to average shares of around 60% and 6%, respectively, by 2050. We demonstrate that electrification proves the most cost-efficient decarbonisation route in all economic sectors, while the direct use of H 2 in final energy consumption provides a relatively small, though essential, contribution to deep decarbonisation. We conclude that the variance observed across results from different models reflects the uncertainties that abound in the shape of deep decarbonisation pathways, in particular with regard to the role of H 2 . Multiple energy system models are used under jointly adopted deep decarbonisation scenarios to conclude that the direct penetration of electricity and hydrogen in final energy consumption may rise to shares of, respectively, 60% and 6%, in Europe by 2050.
Reducing the Decarbonisation Cost Burden for EU Energy-Intensive Industries
Carbon leakage features prominently in the climate policy debate in economies implementing climate policies, especially in the EU. The imposition of carbon pricing impacts negatively the competitiveness of energy-intensive industries, inducing their relocation to countries with weaker environmental regulation. Unilateral climate policy may complement domestic emissions pricing with border carbon adjustment to reduce leakage and protect the competitiveness of domestic manufacturing. Here, we use an enhanced version of GEM-E3-FIT model to assess the macro-economic impacts when the EU unilaterally implements the EU Green Deal goals, leading to a leakage of 25% over 2020–2050. The size and composition, in terms of GHG and energy intensities, of the countries undertaking emission reductions matter for carbon leakage, which is significantly reduced when China joins the mitigation effort, as a result of its large market size and the high carbon intensity of its production. Chemicals and metals face the stronger risks for relocation to non-abating countries. The Border Carbon Adjustment can largely reduce leakage and the negative activity impacts on energy-intensive and trade-exposed industries of regulating countries, by shifting the emission reduction to non-abating countries through implicit changes in product prices.
Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data
Achieving the ambitious climate targets required to limit global warming to 1.5 °C requires a deep transformation of the supply-and-demand side of energy–environmental–economic systems. Recent articles have shown that environmentally sustainable consumer behaviors driven by lifestyle changes can significantly contribute to climate-change mitigation and sustainable development goals. However, lifestyle changes are not adequately captured by scenarios developed with integrated assessment and energy-system models (IAMs/ESMs), which provide limited policy insights. This article conducts a systematic review of the IAM and ESM literature to identify the most important lifestyle changes in current mitigation pathways for the residential and transport sectors, review the employed state-of-the-art modeling approaches and scenario assumptions, and propose improvements to existing methodological frameworks. The review finds that mode shifts towards public transport and active transport modes, shared mobility, and eco-driving have the greatest impact in the transport sector, while actions that reduce space and water-heating requirements and the circular economy are the most effective practices in households. Common modeling approaches lack sophistication as they omit (1) the dynamics and costs of demand-side transitions, (2) the heterogenous responses of different consumer groups, and (3) the structural effects of lifestyles on the macro-economy. New approaches employing innovative methodologies combined with big data collected from users offer new avenues to overcome these challenges and improve the modeling of lifestyle changes in large-scale models.
Policy Modelling for Ambitious Energy Efficiency Investment in the EU Residential Buildings
This paper presents the challenges of increasing the energy efficiency investments in European Union (EU) residential buildings in the context of achieving climate neutrality by 2050. The paper presents the results of the PRIMES buildings model in key energy policy applications to support cost-effective and fair policy making in buildings across Europe. The model covers, in detail, the building sector for all the EU Member States (MS), segmenting the buildings into many categories. The approach proposed includes non-market barriers in conventional microeconomic modelling, which combined with idiosyncratic preferences can capture poor energy efficiency choices and still represent rational behaviours. The model includes a detailed portrayal of policies specific to the sector, comprising economic and regulatory policies as well as institutional measures. The results of the model show that the removal of non-market barriers is of great importance in reducing energy consumption and increasing both the pace and the depth of renovation investment. However, the institutional measures alone are not enough to induce energy efficiency improvement to the scale required to achieve the climate neutrality objectives. Economic (i.e., subsidies) or regulatory measures (i.e., energy performance standards) are also required to decrease emissions and energy consumption in buildings and the paper compares different configurations thereof. The optimum policy mix obviously derives from a compromise among various aims including the cost-effectiveness of the policy budget and the distributional impacts across building and consumer types.
Energy Systems Analysis and Modelling towards Decarbonisation
Introduction The Paris Agreement establishes a process to combine Nationally Determined Contributions with the long-term goal of limiting global warming to well below 2 °C and even to 1.5 °C. Responding to this challenge, national and regional low-emission strategies are prepared by both EU and non-EU countries, outlining clean energy transition pathways. The authors identify the scope of the required investment in generation capacity and the amount of electricity production from BECCS necessary to meet the greenhouse gas (GHG) emission reduction targets in the EU, examining the technology’s impact on the overall system costs and marginal abatement costs (MACs). [...]an automated scheduling framework enabled by smart contract is established for reliable coordination between wind farms and multiple energy markets. [...]based on the findings of the empirical study, this paper puts forward policy recommendations for the construction of China’s carbon disclosure system.