Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
633 result(s) for "Gordon, Stephen B."
Sort by:
A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial
WHO estimates exposure to air pollution from cooking with solid fuels is associated with over 4 million premature deaths worldwide every year including half a million children under the age of 5 years from pneumonia. We hypothesised that replacing open fires with cleaner burning biomass-fuelled cookstoves would reduce pneumonia incidence in young children. We did a community-level open cluster randomised controlled trial to compare the effects of a cleaner burning biomass-fuelled cookstove intervention to continuation of open fire cooking on pneumonia in children living in two rural districts, Chikhwawa and Karonga, of Malawi. Clusters were randomly allocated to intervention and control groups using a computer-generated randomisation schedule with stratification by site, distance from health centre, and size of cluster. Within clusters, households with a child under the age of 4·5 years were eligible. Intervention households received two biomass-fuelled cookstoves and a solar panel. The primary outcome was WHO Integrated Management of Childhood Illness (IMCI)-defined pneumonia episodes in children under 5 years of age. Efficacy and safety analyses were by intention to treat. The trial is registered with ISRCTN, number ISRCTN59448623. We enrolled 10 750 children from 8626 households across 150 clusters between Dec 9, 2013, and Feb 28, 2016. 10 543 children from 8470 households contributed 15 991 child-years of follow-up data to the intention-to-treat analysis. The IMCI pneumonia incidence rate in the intervention group was 15·76 (95% CI 14·89–16·63) per 100 child-years and in the control group 15·58 (95% CI 14·72–16·45) per 100 child-years, with an intervention versus control incidence rate ratio (IRR) of 1·01 (95% CI 0·91–1·13; p=0·80). Cooking-related serious adverse events (burns) were seen in 19 children; nine in the intervention and ten (one death) in the control group (IRR 0·91 [95% CI 0·37–2·23]; p=0·83). We found no evidence that an intervention comprising cleaner burning biomass-fuelled cookstoves reduced the risk of pneumonia in young children in rural Malawi. Effective strategies to reduce the adverse health effects of household air pollution are needed. Medical Research Council, UK Department for International Development, and Wellcome Trust.
A Trial of a 7-Valent Pneumococcal Conjugate Vaccine in HIV-Infected Adults
Pneumococcal infection is an important cause of death and complications in adults with human immunodeficiency virus (HIV) infection, particularly in Africa. In this placebo-controlled, randomized trial involving 496 predominantly HIV-infected Malawian adults who had recently had an invasive pneumococcal infection, the 7-valent conjugated pneumococcal vaccine was found to have 74% efficacy in preventing subsequent invasive pneumococcal infection with a vaccine-associated serotype. In predominantly HIV-infected Malawian adults who had recently had an invasive pneumococcal infection, the 7-valent conjugated pneumococcal vaccine was found to have 74% efficacy in preventing subsequent invasive pneumococcal infection. Streptococcus pneumoniae is a leading cause of death and complications in adults with human immunodeficiency virus (HIV) infection, particularly in sub-Saharan Africa. 1 , 2 The risk of invasive pneumococcal disease is 30 to 100 times as high in patients with HIV infection as in age-matched controls without such infection. 3 , 4 Recurrent invasive pneumococcal disease is common, with up to 25% of patients having an additional episode, predominantly reinfection, in the subsequent 12 months. 1 , 5 Even among patients who have access to timely and effective care, the case fatality rate with invasive pneumococcal disease is at least 8% 6 and rises to 50% . . .
First Human Challenge Testing of a Pneumococcal Vaccine. Double-Blind Randomized Controlled Trial
New vaccines are urgently needed to protect the vulnerable from bacterial pneumonia. Clinical trials of pneumonia vaccines are slow and costly, requiring tens of thousands of patients. Studies of pneumococcal vaccine efficacy against colonization have been proposed as a novel method to down-select between vaccine candidates. Using our safe and reproducible experimental human pneumococcal colonization model, we aimed to determine the effect of 13-valent pneumococcal conjugate vaccine (PCV) on colonization. A total of 100 healthy participants aged 18-50 years were recruited into this double-blind randomized placebo-controlled trial. They were randomly assigned to PCV (n = 49) or hepatitis A (control, n = 50) vaccination and inoculated with 80,000 CFU/100 μl of Streptococcus pneumoniae (6B) per naris. Participants were followed up for 21 days to determine pneumococcal colonization by culture of nasal wash. The PCV group had a significantly reduced rate of 6B colonization (10% [5 of 48]) compared with control subjects (48% [23 of 48]) (risk ratio, 0.22; confidence interval, 0.09-0.52; P < 0.001). Density of colonization was reduced in the PCV group compared with the control group following inoculation. The area under the curve (density vs. day) was significantly reduced in the PCV compared with control group (geometric mean, 259 vs. 11,183; P = 0.017). PCV reduced pneumococcal colonization rate, density, and duration in healthy adults. The experimental human pneumococcal colonization model is a safe, cost-effective, and efficient method to determine the protective efficacy of new vaccines on pneumococcal colonization; PCV provides a gold standard against which to test these novel vaccines. Clinical trial registered with 45340436.
Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery
Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most ‘professional’ antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.
Persistent pneumococcal colonisation in antiretroviral-treated HIV infection is associated with nasal inflammation
Despite systemic viral suppression, people living with HIV (PLHIV) on antiretroviral therapy (ART) remain highly susceptible to pneumococcal colonisation and disease. Here, we show that long-term ART does not restore nasal mucosal immunity. Using flow cytometry, single-cell transcriptomics, and neutrophil functional assays, we identify a persistent mucosal immune signature in PLHIV-ART > 1 yr marked by epithelial-driven neutrophilic inflammation, T cell exhaustion, and cellular senescence. Neutrophils exhibit mitochondrial stress, senescence-associated secretory phenotype (SASP) gene expression, and impaired oxidative burst, particularly in individuals with pneumococcal carriage. Epithelial cells express elevated neutrophil-recruiting ligand genes, while nasal T cells display pro-apoptotic and exhaustion gene profiles. Neutrophilic inflammation is strongly associated with pneumococcal carriage density, implicating a feedforward loop between inflammation and microbial persistence. Our findings reveal tissue-specific immune dysregulation despite ART and suggest that targeting epithelial-immune signalling or neutrophil senescence may offer novel therapeutic avenues to reduce respiratory pathogen burden in PLHIV. People living with HIV (PLHIV) on antiretroviral therapy (ART) remain highly susceptible to pneumococcal colonisation and disease. In an analysis of 132 adults in Malawi, the authors report that long-term ART does not restore nasal mucosal immunity.
Polysaccharide-Specific Memory B Cells Predict Protection against Experimental Human Pneumococcal Carriage
We have previously demonstrated that experimental pneumococcal carriage enhances immunity and protects healthy adults against carriage reacquisition after rechallenge with a homologous strain. To investigate the role of naturally acquired pneumococcal protein and polysaccharide (PS)-specific immunity in protection against carriage acquisition using a heterologous challenge model. We identified healthy volunteers that were naturally colonized with pneumococcus and, after clearance of their natural carriage episode, challenged them with a heterologous 6B strain. In another cohort of volunteers we assessed 6BPS-specific, PspA-specific, and PspC-specific IgG and IgA plasma and memory B-cell populations before and 7, 14, and 35 days after experimental pneumococcal inoculation. Heterologous challenge with 6B resulted in 50% carriage among volunteers with previous natural pneumococcal carriage. Protection from carriage was associated with a high number of circulating 6BPS IgG-secreting memory B cells at baseline. There were no associations between protection from carriage and baseline levels of 6BPS IgG in serum or nasal wash, PspA-specific, or PspC-specific memory B cells or plasma cells. In volunteers who did not develop carriage, the number of circulating 6BPS memory B cells decreased and the number of 6BPS plasma cells increased postinoculation. Our data indicate that naturally acquired PS-specific memory B cells, but not levels of circulating IgG at time of pneumococcal exposure, are associated with protection against carriage acquisition.
Novel Analysis of Immune Cells from Nasal Microbiopsy Demonstrates Reliable, Reproducible Data for Immune Populations, and Superior Cytokine Detection Compared to Nasal Wash
The morbidity and mortality related to respiratory tract diseases is enormous, with hundreds of millions of individuals afflicted and four million people dying each year. Understanding the immunological processes in the mucosa that govern outcome following pathogenic encounter could lead to novel therapies. There is a need to study responses at mucosal surfaces in humans for two reasons: (i) Immunological findings in mice, or other animals, often fail to translate to humans. (ii) Compartmentalization of the immune system dictates a need to study sites where pathogens reside. In this manuscript, we describe two novel non-invasive nasal mucosal microsampling techniques and their use for measuring immunological parameters: 1) using nasal curettes to collect cells from the inferior turbinate and; 2) absorptive matrices to collect nasal lining fluid. Both techniques were well tolerated and yielded reproducible and robust data. We demonstrated differences in immune populations and activation state in nasal mucosa compared to blood as well as compared to nasopharyngeal lumen in healthy adults. We also found superior cytokine detection with absorptive matrices compared to nasal wash. These techniques are promising new tools that will facilitate studies of the immunological signatures underlying susceptibility and resistance to respiratory infections.
Pneumococcal colonisation is an asymptomatic event in healthy adults using an experimental human colonisation model
Pneumococcal colonisation is regarded as a pre-requisite for developing pneumococcal disease. In children previous studies have reported pneumococcal colonisation to be a symptomatic event and described a relationship between symptom severity/frequency and colonisation density. The evidence for this in adults is lacking in the literature. This study uses the experimental human pneumococcal challenge (EHPC) model to explore whether pneumococcal colonisation is a symptomatic event in healthy adults. Healthy participants aged 18-50 were recruited and inoculated intra-nasally with either Streptococcus pneumoniae (serotypes 6B, 23F) or saline as a control. Respiratory viral swabs were obtained prior to inoculation. Nasal and non-nasal symptoms were then assessed using a modified Likert score between 1 (no symptoms) to 7 (cannot function). The rate of symptoms reported between the two groups was compared and a correlation analysis performed. Data from 54 participants were analysed. 46 were inoculated with S. pneumoniae (29 with serotype 6B, 17 with serotype 23F) and 8 received saline (control). In total, 14 became experimentally colonised (30.4%), all of which were inoculated with serotype 6B. There was no statistically significant difference in nasal (p = 0.45) or non-nasal symptoms (p = 0.28) between the inoculation group and the control group. In those who were colonised there was no direct correlation between colonisation density and symptom severity. In the 22% (12/52) who were co-colonised, with pneumococcus and respiratory viruses, there was no statistical difference in either nasal or non-nasal symptoms (virus positive p = 0.74 and virus negative p = 1.0). Pneumococcal colonisation using the EHPC model is asymptomatic in healthy adults, regardless of pneumococcal density or viral co-colonisation.
Comprehensive review of safety in Experimental Human Pneumococcal Challenge
Experimental Human Pneumococcal Challenge (EHPC) involves the controlled exposure of adults to a specific antibiotic-sensitive Streptococcus pneumoniae serotype, to induce nasopharyngeal colonisation for the purpose of vaccine research. The aims are to review comprehensively the safety profile of EHPC, explore the association between pneumococcal colonisation and frequency of safety review and describe the medical intervention required to undertake such studies. A single-centre review of all EHPC studies performed 2011-2021. All recorded serious adverse events (SAE) in eligible studies are reported. An unblinded meta-analysis of collated anonymised individual patient data from eligible EHPC studies was undertaken to assess the association between experimental pneumococcal colonisation and the frequency of safety events following inoculation. In 1416 individuals (median age 21, IQR 20-25), 1663 experimental pneumococcal inoculations were performed. No pneumococcal-related SAE have occurred. 214 safety review events were identified with 182 (12.85%) participants presenting with symptoms potentially in keeping with pneumococcal infection, predominantly in pneumococcal colonised individuals (colonised = 96/658, non-colonised = 86/1005, OR 1.81 (95% CI 1.28-2.56, P = <0.001). The majority were mild (pneumococcal group = 72.7% [120/165 reported symptoms], non-pneumococcal = 86.7% [124/143 reported symptoms]). 1.6% (23/1416) required antibiotics for safety. No SAEs were identified directly relating to pneumococcal inoculation. Safety review for symptoms was infrequent but occurred more in experimentally colonised participants. Most symptoms were mild and resolved with conservative management. A small minority required antibiotics, notably those serotype 3 inoculated. Outpatient human pneumococcal challenge can be conducted safely with appropriate levels of safety monitoring procedures in place.
AstraZeneca COVID-19 vaccine induces robust broadly cross-reactive antibody responses in Malawian adults previously infected with SARS-CoV-2
Background Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. Methods Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days ( n  = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) ( n  = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Šídák's or Holm-Šídák's test. Results We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30–60 days vs. 210–270 days; Log ID 50 6.8 vs. 5.3, p  = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain ( p  < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p  < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. Conclusions These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.