Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
90
result(s) for
"Gouttefangeas, Cécile"
Sort by:
The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer
by
Gouttefangeas, Cécile
,
Klein, Reinhild
,
Maia, Ana
in
Antigens
,
Autoimmune diseases
,
Autoimmune Diseases - therapy
2023
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Journal Article
Personalized cancer vaccines: adjuvants are important, too
2018
Therapeutic cancer vaccines have shown limited clinical efficacy so far. Nevertheless, in the meantime, our understanding of immune cell function and the interactions of immune cells with growing tumors has advanced considerably. We are now in a position to invest this knowledge into the design of more powerful vaccines and therapy combinations aimed at increasing immunogenicity and decreasing tumor-induced immunosuppression. This review focuses essentially on peptide-based human vaccines. We will discuss two aspects that are critical for increasing their intrinsic immunogenicity: the selection of the antigen(s) to be targeted, and the as yet unmet need for strong adjuvants.
Journal Article
CAF-immune cell crosstalk and its impact in immunotherapy
by
Maia, Ana
,
Schöllhorn, Anna
,
Schuhmacher, Juliane
in
Cancer
,
Cancer immunotherapy
,
Extracellular matrix
2023
Tumour cells do not exist as isolated entities. Instead, they are surrounded by a variety of cells and extracellular matrix, which form the tumour microenvironment (TME). The interaction between cancer cells and their microenvironment is increasingly acknowledged as essential in dictating the outcome of the patients. The TME includes everything that surrounds tumour cells and is often highjacked by the latter to promote their growth, invasion, and immune escape. Immune cells and cancer-associated fibroblasts (CAFs) are essential components of the TME, and there is increasing evidence that their interaction constitutes a major player not only for tumour progression but also for therapy response.Recent work in the field of immuno-oncology resulted in the development of novel therapies that aim at activating immune cells against cancer cells to eliminate them. Despite their unprecedented success, the lack of response from a large portion of patients highlights the need for further progress and improvement. To achieve its ultimate goal, the interaction between cancer cells and the TME needs to be studied in-depth to allow the targeting of mechanisms that are involved in resistance or refractoriness to therapy. Moreover, predictive and prognostic biomarkers for patient stratification are still missing. In this review, we focus on and highlight the complexity of CAFs within the TME and how their interaction, particularly with immune cells, can contribute to treatment failure. We further discuss how this crosstalk can be further dissected and which strategies are currently used to target them.
Journal Article
CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy
by
Richardson, Jennifer R.
,
Schöllhorn, Anna
,
Gouttefangeas, Cécile
in
Antigens
,
Antitumor activity
,
Cancer
2021
Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.
Journal Article
Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2
by
Neumaier, Michael
,
Lasser, Samantha
,
Altevogt, Peter
in
Antibodies
,
Antibody Formation
,
Antigens
2022
A gradual decay in humoral and cellular immune responses over time upon SAR1S-CoV-2 vaccination may cause a lack of protective immunity. We conducted a longitudinal analysis of antibodies, T cells, and monocytes in 25 participants vaccinated with mRNA or ChAdOx1-S up to 12 weeks after the 3 rd (booster) dose with mRNA vaccine. We observed a substantial increase in antibodies and CD8 T cells specific for the spike protein of SARS-CoV-2 after vaccination. Moreover, vaccination induced activated T cells expressing CD69, CD137 and producing IFN-γ and TNF-α. Virus-specific CD8 T cells showed predominantly memory phenotype. Although the level of antibodies and frequency of virus-specific T cells reduced 4-6 months after the 2 nd dose, they were augmented after the 3 rd dose followed by a decrease later. Importantly, T cells generated after the 3 rd vaccination were also reactive against Omicron variant, indicated by a similar level of IFN-γ production after stimulation with Omicron peptides. Breakthrough infection in participants vaccinated with two doses induced more SARS-CoV-2-specific T cells than the booster vaccination. We found an upregulation of PD-L1 expression on monocytes but no accumulation of myeloid cells with MDSC-like immunosuppressive phenotype after the vaccination. Our results indicate that the 3 rd vaccination fosters antibody and T cell immune response independently from vaccine type used for the first two injections. However, such immune response is attenuated over time, suggesting thereby the need for further vaccinations.
Journal Article
Immune Signatures and Survival of Patients With Metastatic Melanoma, Renal Cancer, and Breast Cancer
by
Pawelec, Graham
,
Gouttefangeas, Cécile
,
Wistuba-Hamprecht, Kilian
in
Antibodies
,
Antigens
,
Biobanks
2020
Despite remarkable recent progress in treating solid cancers, especially the success of immunomodulatory antibody therapies for numerous different cancer types, it remains the case that many patients fail to respond to treatment. It is therefore of immense importance to identify biomarkers predicting clinical responses to treatment and patient survival, which would not only assist in targeting treatments to patients most likely to benefit, but might also provide mechanistic insights into the reasons for success or failure of the therapy. Several peripheral blood or tumor tissue diagnostic and predictive biomarkers known to be informative for cancer patient survival may be applicable for this purpose. The use of peripheral blood (\"liquid biopsy\") offers numerous advantages not only for predicting treatment responses at baseline but also for monitoring patients on-therapy. Assessment of the tumor microenvironment and infiltrating immune cells also delivers important information on cancer-host interactions but the requirement for tumor tissues makes this more challenging, especially for monitoring sequential changes in the individual patient. In this contribution, we will review our findings on immune signatures potentially informative for clinical outcome in melanoma, breast cancer and renal cell carcinoma, particularly the outcome of checkpoint blockade, by applying multiparametric flow cytometry and mass cytometry, routine clinical monitoring and functional testing for predicting and following individual patient responses to therapy.
Journal Article
Adhering to adhesion: assessing integrin conformation to monitor T cells
by
Gouttefangeas, Cécile
,
Schuhmacher, Juliane
,
Dimitrov, Stoyan
in
Antibodies
,
Antigens
,
Biomarkers
2019
Monitoring T cells is of major importance for the development of immunotherapies. Recent sophisticated assays can address particular aspects of the anti-tumor T-cell repertoire or support very large-scale immune screening for biomarker discovery. Robust methods for the routine assessment of the quantity and quality of antigen-specific T cells remain, however, essential. This review discusses selected methods that are commonly used for T-cell monitoring and summarizes the advantages and limitations of these assays. We also present a new functional assay, which specifically detects activated β2 integrins within a very short time following CD8+ T-cell stimulation. Because of its unique and favorable characteristics, this assay could be useful for implementation into our T-cell monitoring toolbox.
Journal Article
Unveiling conserved HIV-1 open reading frames encoding T cell antigens using ribosome profiling
2025
The development of ribosomal profiling (Riboseq) revealed the immense coding capacity of human and viral genomes. Here, we used Riboseq to delineate the translatome of HIV-1 in infected CD4
+
T cells. In addition to canonical viral protein coding sequences (CDSs), we identify 98 alternative open reading frames (ARFs), corresponding to small Open Reading Frames (sORFs) that are distributed across the HIV genome including the UTR regions. Using a database of HIV genomes, we observe that most ARF amino-acid sequences are likely conserved among clade B and C of HIV-1, with 8 ARF-encoded amino-acid sequences being more conserved than the overlapping CDSs. Using T cell-based assays and mass spectrometry-based immunopeptidomics, we demonstrate that ARFs encode viral polypeptides. In the blood of people living with HIV, ARF-derived peptides elicit potent poly-functional T cell responses mediated by both CD4
+
and CD8
+
T cells. Our discovery expands the list of conserved viral polypeptides that are targets for vaccination strategies and might reveal the existence of viral microproteins or pseudogenes.
Here, using ribosomal profiling, the authors characterize the translatome of HIV-1 revealing tens of alternative open reading frames (ARF) that encode conserved viral antigens and show that ARF-derived peptides elicit potent HIV-specific poly-functional immune responses mediated by both CD4
+
and CD8
+
T cells.
Journal Article
Radiotherapy planning parameters correlate with changes in the peripheral immune status of patients undergoing curative radiotherapy for localized prostate cancer
2022
PurposeThe influence of radiotherapy on patient immune cell subsets has been established by several groups. Following a previously published analysis of immune changes during and after curative radiotherapy for prostate cancer, this analysis focused on describing correlations of changes of immune cell subsets with radiation treatment parameters.Patients and methodsFor 13 patients treated in a prospective trial with radiotherapy to the prostate region (primary analysis) and five patients treated with radiotherapy to prostate and pelvic nodal regions (exploratory analysis), already published immune monitoring data were correlated with clinical data as well as radiation planning parameters such as clinical target volume (CTV) and volumes receiving 20 Gy (V20) for newly contoured volumes of pelvic blood vessels and bone marrow.ResultsMost significant changes among immune cell subsets were observed at the end of radiotherapy. In contrast, correlations of age and CD8+ subsets (effector and memory cells) were observed early during and 3 months after radiotherapy. Ratios of T cells and T cell proliferation compared to baseline correlated with CTV. Early changes in regulatory T cells (Treg cells) and CD8+ effector T cells correlated with V20 of blood vessels and bone volumes.ConclusionsPatient age as well as radiotherapy planning parameters correlated with immune changes during radiotherapy. Larger irradiated volumes seem to correlate with early suppression of anti-cancer immunity. For immune cell analysis during normofractionated radiotherapy and correlations with treatment planning parameters, different time points should be looked at in future projects.Trial registration number:NCT01376674, 20.06.2011
Journal Article
Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4+ Cells
2021
The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4 + cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4 + cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64 Cu-radiolabeled CD4-Nb1 in CD4 + T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.
Journal Article