Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
149
result(s) for
"Grace, Miranda"
Sort by:
The HPV8 E6 protein targets the Hippo and Wnt signaling pathways as part of its arsenal to restrain keratinocyte differentiation
2023
Infections with β-genus human papillomaviruses (HPVs) cause hyperplastic cutaneous lesions. In individuals with the rare hereditary skin disease, epidermodysplasia verruciformis, such lesions can progress to cutaneous squamous cell carcinomas (cSCCs). β-HPV infections may also underlie cSCC development in chronically immunosuppressed individuals. Despite their prevalence and disease association, these viruses are not as well studied as the cancer-associated high-risk α-genus HPVs. HPV-associated lesions are characterized by a marked expansion of dividing, basal-like, poorly differentiated viral cells that contain viral genomes. This reflects the ability of HPVs to inhibit epithelial cell differentiation which is likely driven by the need to establish and maintain long-term viral infections in basal-like epithelial cells. Remarkably, the β-HPVs accomplish this by targeting different cellular effectors than the α-genus HPVs. It was previously reported that the HPV8 E6 protein restrains epithelial cell differentiation by inhibiting Notch and transforming growth factor β signaling. Here, we report that the HPV8 E6 protein can subvert Hippo signaling by activating Transcriptional Enhanced Associate Domain (TEAD) transcriptional programs that inhibit the expression of keratinocyte differentiation markers. Moreover, we determined that HPV8 E6 can interfere with gene expression programs triggered by Wnt signaling by binding to the β-catenin-associated transcriptional co-activator B-cell CLL/lymphoma 9-like(BCL9L) and that this also serves to restrain the expression of epithelial differentiation markers. Hence, the HPV8 E6 protein has evolved a remarkably large array of mechanisms to subvert the differentiation program of the infected epithelial cells. Human papillomaviruses (HPVs) infect basal epithelial cells and cause a dramatic expansion of basal-like, proliferative cells. This reflects the ability of papillomaviruses to delay keratinocyte differentiation, thereby maintaining aspects of the basal cell identity of persistently infected cells. This may enable papillomaviruses to establish and maintain long-term infections in squamous epithelial tissues. Previous work has revealed that the ability of β-HPV8 E6 protein to inhibit Notch and transforming growth factor β signaling importantly contributes to this activity. Here, we present evidence that HPV8 E6 also subverts Hippo and Wnt signaling and that these activities also aid in restraining keratinocyte differentiation.
Journal Article
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis
by
Hatterschide, Joshua
,
White, Elizabeth A.
,
Nulton, Tara J.
in
Biological Sciences
,
Cancer
,
Cell Differentiation
2019
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV⁺ but not HPV⁻ cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Journal Article
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation
by
Meyers, Jordan M.
,
Uberoi, Aayushi
,
Grace, Miranda
in
Animals
,
Biology and Life Sciences
,
Cell Differentiation - physiology
2017
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-β signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Journal Article
MmuPV1 E7’s interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease
2023
Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7 K81S , that was defective for binding PTPN14. Wild-type (WT) and E7 K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7 K81S mutant virus (E7 K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7 K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7 K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7 K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7 K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7 K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7’s ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.
Journal Article
MmuPV1 E6 induces cell proliferation and other hallmarks of cancer
2023
The E6 protein encoded by the murine papillomavirus (MmuPV1) is essential for MmuPV1-induced skin disease. Our previous work has identified a number of cellular interacting partners of MmuPV1 E6 and E7 through affinity purification/mass spectrometry analysis. These studies revealed that MmuPV1 E6 potently inhibits keratinocyte differentiation through multiple molecular mechanisms including inhibition of NOTCH and TGF-β signaling. Here, we report that MmuPV1 E6 has additional important oncogenic activities when expressed in its natural host cells, mouse keratinocytes, including increasing proliferation, overcoming density-mediated growth arrest, and proliferation under conditions of limited supply of growth factors. Unbiased proteomic/transcriptomic analyses of mouse keratinocytes expressing MmuPV1 E6 substantiated its effect on these cellular processes and divulged that some of these effects may be mediated in part through it upregulating E2F activity. Our analyses also revealed that MmuPV1 E6 may alter other cancer hallmarks including evasion of growth suppressors, inhibition of immune response, resistance to cell death, and alterations in DNA damage response. Collectively, our results suggest that MmuPV1 E6 is a major driver of multiple hallmarks of cancer in MmuPV1’s natural host cells, mouse keratinocytes. The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Journal Article
The Mus musculus Papillomavirus Type 1 E7 Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis
2021
Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts with RB1. We show that MmuPV1 E7 interacts through its C terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting noncanonical activities of RB1, which are independent of RB1’s ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis. IMPORTANCE Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The papillomavirus E6 and E7 proteins are thought to function to reprogram host epithelial cells to enable viral genome replication in terminally differentiated, normally growth-arrested cells. E6 and E7 lack enzymatic activities and function by interacting and functionally altering host cell regulatory proteins. Many cellular proteins that can interact with E6 and E7 have been identified, but the biological relevance of these interactions for viral pathogenesis has not been determined. This is because papillomaviruses are species specific and do not infect heterologous hosts. Here, we use a recently established mouse papillomavirus (MmuPV1) model to investigate the role of the E7 protein in viral pathogenesis. We show that MmuPV1 E7 is necessary for papilloma formation. The retinoblastoma tumor suppressor protein (RB1) is targeted by many papillomaviral E7 proteins, including cancer-associated HPVs. We show that MmuPV1 E7 can bind RB1 and that infection with a mutant MmuPV1 virus that expresses an RB1 binding-defective E7 mutant caused smaller and fewer papillomas that arise with delayed kinetics.
Journal Article
Sympathetic activity contributes to the fMRI signal
by
de Zwart, Jacco Adrianus
,
Özbay, Pinar Senay
,
Chappel-Farley, Miranda Grace
in
59/36
,
59/57
,
631/378/1385/2641
2019
The interpretation of functional magnetic resonance imaging (fMRI) studies of brain activity is often hampered by the presence of brain-wide signal variations that may arise from a variety of neuronal and non-neuronal sources. Recent work suggests a contribution from the sympathetic vascular innervation, which may affect the fMRI signal through its putative and poorly understood role in cerebral blood flow (CBF) regulation. By analyzing fMRI and (electro-) physiological signals concurrently acquired during sleep, we found that widespread fMRI signal changes often co-occur with electroencephalography (EEG) K-complexes, signatures of sub-cortical arousal, and episodic drops in finger skin vascular tone; phenomena that have been associated with intermittent sympathetic activity. These findings support the notion that the extrinsic sympathetic innervation of the cerebral vasculature contributes to CBF regulation and the fMRI signal. Accounting for this mechanism could help separate systemic from local signal contributions and improve interpretation of fMRI studies.
Özbay et al. show the contribution of fluctuations in sympathetic activation on global fMRI signals in human brain during sleep. Such an inference is based on simultaneously acquiring and correlating EEG K-complexes and episodic drops in finger skin signatures with BOLD-fMRI changes during sleep.
Journal Article
Biological activities and molecular targets of the human papillomavirus E7 oncoprotein
by
Gonzalez, Sonia L
,
Eichten, Alexandra
,
Münger, Karl
in
Adenoviruses
,
AE7 protein
,
Antigen T (large)
2001
The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.
Journal Article
RURAL PARENTS’ HOME-BASED ACADEMIC SOCIALISATION AND THE RELUCTANCE TO LEARN ENGLISH
by
Lim, Jia Wei
,
MIRANDA, PETRINA GRACE
in
English language
,
English learning engagement
,
Parents' academic socialisation
2025
This study seeks to understand the role of parent academic socialisation and its possible connections to rural adolescents’ reluctance in developing English proficiency. The Parent Socialisation Model of Eccles and Wigfield’s Situated Expectancy-Value Theory guides this qualitative study to examine parents’ beliefs of the value of English for their children, perceptions of their children’s actual English language abilities and how parents’ beliefs and perceptions are reflected through parents’ learning-related behaviours. Data was elicited from semi structured interviews and home observations in a rural community in Malaysia. Thematic analysis revealed that parents’ English language beliefs were not evenly positive and not reflected strongly through home academic socialisation. Furthermore, due to gaps in understanding learning realities, parents did not accurately perceive their children’s actual abilities in English. Consequently, parental learning investments were inadequate and not sustained. This study concludes that rural parents’ insufficient academic socialisation contributes to their children’s reluctance to learn English. Reversal of English learning reluctance will require increasing parents’ beliefs in the utility of English in order to increase and diversify their engagement in their children’s learning. Fostering parent-practitioner bonds of trust will help parents understand that children’s learning of English is a shared responsibility between parents and practitioners.
Journal Article
Viral Perturbations of Host Networks Reflect Disease Etiology
by
Hellner, Karin
,
Baldwin, Amy
,
Braun, Pascal
in
Biology
,
Computational Biology
,
Development and progression
2012
Many human diseases, arising from mutations of disease susceptibility genes (genetic diseases), are also associated with viral infections (virally implicated diseases), either in a directly causal manner or by indirect associations. Here we examine whether viral perturbations of host interactome may underlie such virally implicated disease relationships. Using as models two different human viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), we find that host targets of viral proteins reside in network proximity to products of disease susceptibility genes. Expression changes in virally implicated disease tissues and comorbidity patterns cluster significantly in the network vicinity of viral targets. The topological proximity found between cellular targets of viral proteins and disease genes was exploited to uncover a novel pathway linking HPV to Fanconi anemia.
Journal Article