Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
266 result(s) for "Graham C. Walker"
Sort by:
Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy?
[...]mistakes introduced by TLS polymerases copying over DNA lesions introduced during the chemotherapy lead to mutations that contribute to acquired resistance. Besides the structural features of individual TLS polymerases, successful TLS also depends on interactions between these polymerases and other cellular proteins that target and choreograph their activity. [...]targeting REV1 and REV3 might not only increase killing of cancer cells but could also potentially suppress secondary malignancies and tumor relapse. [...]the effectiveness of small molecule inhibitors of TLS polymerase could be further improved by delivery systems that could target these drugs to specific tumors in cancer patients. Because protein-protein interactions are so important for TLS, drug targets for these interaction interfaces could be promising candidates for cancer therapeutics.
Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics
A detailed understanding of the mechanisms that underlie antibiotic killing is important for the derivation of new classes of antibiotics and clinically useful adjuvants for current antimicrobial therapies. Our efforts to understand why DinB (DNA polymerase IV) overproduction is cytotoxic to Escherichia coli led to the unexpected insight that oxidation of guanine to 8-oxo-guanine in the nucleotide pool underlies much of the cell death caused by both DinB overproduction and bactericidal antibiotics. We propose a model in which the cytotoxicity of beta-lactams and quinolones predominantly results from lethal double-strand DNA breaks caused by incomplete repair of closely spaced 8-oxo-deoxyguanosine lesions, whereas the cytotoxicity of aminoglycosides might additionally result from mistranslation due to the incorporation of 8-oxo-guanine into newly synthesized RNAs.
Antibiotics induce redox-related physiological alterations as part of their lethality
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H ₂O ₂ sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H ₂O ₂. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality.
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Cisplatin and other DNA-damaging chemotherapeutics are widely used to treat a broad spectrum of malignancies. However, their application is limited by both intrinsic and acquired chemoresistance. Most mutations that result from DNA damage are the consequence of error-prone translesion DNA synthesis, which could be responsible for the acquired resistance against DNA-damaging agents. Recent studies have shown that the suppression of crucial gene products (e.g., REV1 , REV3L) involved in the error-prone translesion DNA synthesis pathway can sensitize intrinsically resistant tumors to chemotherapy and reduce the frequency of acquired drug resistance of relapsed tumors. In this context, combining conventional DNA-damaging chemotherapy with siRNA-based therapeutics represents a promising strategy for treating patients with malignancies. To this end, we developed a versatile nanoparticle (NP) platform to deliver a cisplatin prodrug and REV1 / REV3L -specific siRNAs simultaneously to the same tumor cells. NPs are formulated through self-assembly of a biodegradable poly(lactide- co glycolide)- b -poly(ethylene glycol) diblock copolymer and a self-synthesized cationic lipid. We demonstrated the potency of the siRNA-containing NPs to knock down target genes efficiently both in vitro and in vivo. The therapeutic efficacy of NPs containing both cisplatin prodrug and REV1 / REV3L -specific siRNAs was further investigated in vitro and in vivo. Quantitative real-time PCR results showed that the NPs exhibited a significant and sustained suppression of both genes in tumors for up to 3 d after a single dose. Administering these NPs revealed a synergistic effect on tumor inhibition in a human Lymph Node Carcinoma of the Prostate xenograft mouse model that was strikingly more effective than platinum monotherapy.
How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model
Key Points Symbiotic nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which it enters the plant root. Once these invasion structures reach the target cells in the interior of the plant root, the bacteria are endocytosed within a host cell membrane-derived compartment. In the microaerobic environment provided by the host cell, the bacteria differentiate into a specialized form called a bacteroid. The bacteroid form expresses the oxygen-sensitive enzyme nitrogenase that catalyzes the conversion of atmospheric nitrogen to ammonia. The dissection of the bacterial and plant signalling pathways that are involved in each stage of the invasion process has been facilitated by the complete genomic sequencing of Sinorhizobium meliloti and the near complete sequencing of the genome of the model host plant Medicago truncatula . Rhizobial bacteria interact very differently with the plant innate immune system than other groups of bacteria. Rhizobia lack some of the microbial molecular patterns that provoke plant defence responses. Additionally, legume plants differ from other plant families in that they lack the ability to perceive and respond defenceively to other microbial molecular patterns. Symbiotic rhizobial bacteria are similar to pathogenic bacteria such as Brucella spp, in that they both form chronic infections of eukaryotic cells within a host-derived membrane compartment, and require some of the same bacterial factors for survival within the host. These factors include the correct structure of the lipopolysaccharide core and lipid A, presence of cyclic β-glucans, and a common bacterial regulatory circuitry. The symbiotic relationship between leguminous plants and rhizobial bacteria is one of the most well-studied microbial symbioses. The availability of genome sequence information for many of the bacterial and plant partners involved has been invaluable and in this article, the authors review the most recent discoveries about the mutual recognition between Sinorhizobium meliloti and Medicago truncatula . Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa ( Medicago sativa ) and the model host plant barrel medic ( Medicago truncatula ).
Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-resistant lung cancer
Cisplatin is a standard of care for lung cancer, yet platinum therapy rarely results in substantial tumor regression or a dramatic extension in patient survival. Here, we examined whether targeting Rev7 (also referred to as Mad2B, Mad2L2, and FANCV), a component of the translesion synthesis (TLS) machinery, could potentiate the action of cisplatin in non-small cell lung cancer (NSCLC) treatment. Rev7 loss led to an enhanced tumor cell sensitivity to cisplatin and dramatically improved chemotherapeutic response in a highly drugresistant mouse model of NSCLC. While cisplatin monotherapy resulted in tumor cell apoptosis, Rev7 deletion promoted a cisplatininduced senescence phenotype. Moreover, Rev7 deficiency promoted greater cisplatin sensitivity than that previously shown following targeting of other Pol ζ-proteins, suggesting that Pol ζ-dependent and -independent roles of Rev7 are relevant to cisplatin response. Thus, targeting Rev7 may represent a unique strategy for altering and enhancing chemotherapeutic response.
Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti
Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone.
Error-prone translesion synthesis mediates acquired chemoresistance
The development of cancer drug resistance is a persistent clinical problem limiting the successful treatment of disseminated malignancies. However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. Error-prone translesional DNA synthesis (TLS) is known to underlie the mutagenic effects of numerous anticancer agents, but little is known as to whether mutation induced by this process is ultimately relevant to tumor drug resistance. Here, we use a tractable mouse model of B-cell lymphoma to interrogate the role of error-prone translesional DNA synthesis in chemotherapy-induced mutation and resistance to front-line chemotherapy. We find that suppression of Rev1, an essential TLS scaffold protein and dCMP transferase, inhibits both cisplatin- and cyclosphosphamide-induced mutagenesis. Additionally, by performing repeated cycles of tumor engraftment and treatment, we show that Rev1 plays a critical role in the development of acquired cyclophosphamide resistance. Thus, chemotherapy not only selects for drug-resistant tumor population but also directly promotes the TLS-mediated acquisition of resistance-causing mutations. These data provide an example of an alteration that prevents the acquisition of drug resistance in tumors in vivo. Because TLS also represents a critical mechanism of DNA synthesis in tumor cells following chemotherapy, these data suggest that TLS inhibition may have dual anticancer effects, sensitizing tumors to therapy as well as preventing the emergence of tumor chemoresistance.
Exploiting peptide chirality and transport to dissect the complex mechanism of action of host peptides on bacteria
Elucidation of the complex mechanisms of action of antimicrobial peptides (AMPs) is critical for improving their efficacy. A major challenge in AMP research is distinguishing AMP effects resulting from various protein interactions from those caused by membrane disruption. Moreover, since AMPs often act in multiple cellular compartments, it is challenging to pinpoint where their distinct activities occur. Nodule-specific cysteine-rich (NCR) peptides secreted by some legumes, including NCR247, have evolved from AMPs to regulate differentiation of their nitrogen-fixing bacterial partner during symbiosis as well as to exert antimicrobial actions. At sub-lethal concentrations, NCR247 exhibits strikingly pleiotropic effects on Sinorhizobium meliloti . We used the L- and D-enantiomeric forms of NCR247 to distinguish between phenotypes resulting from stereospecific, protein-targeted interactions and those caused by non-specific interactions such as membrane disruption. In addition, we utilized an S. meliloti strain lacking BacA, a transporter that imports NCR peptides into the cytoplasm. The bacterial protein BacA, plays critical symbiotic roles by possibly reducing periplasmic peptide accumulation and fine-tuning symbiotic signaling. Use of the BacA-deficient strain made it possible to distinguish between phenotypes resulting from peptide interactions in the periplasm and those occurring in the cytoplasm. At high concentrations, both L- and D-NCR247 permeabilize bacterial membranes, consistent with nonspecific cationic AMP activity. In the cytoplasm, both NCR247 enantiomers sequester heme and trigger iron starvation in a chirality-independent but BacA-dependent manner. However, only L-NCR247 activates bacterial two-component systems via stereospecific periplasmic interactions. By combining stereochemistry and genetics, this work disentangles the spatial and molecular complexity of NCR247 action. This approach provides critical mechanistic insights into how host peptides with pleiotropic functions modulate bacterial physiology.
Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility
Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using theSinorhizobium melilotiandMedicago truncatulasymbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties.hrrPencodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability ofhrrPto suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and thehrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded byM. truncatula.NCR peptides are crucial signals used byM. truncatulafor inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015)Proc Natl Acad Sci USA,10.1073/pnas.1500777112]. The expression pattern ofhrrPand its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.