Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Granato, Daniel"
Sort by:
Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y)
by
Barros, Ana
,
Granato, Daniel
,
Garcia, Juliana
in
agro-industrial side streams
,
antioxidant agents
,
Brain research
2022
This work evaluated the phytochemical composition of olive seed extracts from different cultivars (‘Cobrançosa’, ‘Galega’, and ’Picual’) and their antioxidant capacity. In addition, it also appraised their potential antineurodegenerative properties on the basis of their ability to inhibit enzymes associated with neurodegenerative diseases: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR). To achieve this goal, the phenolic composition of the extracts was determined through high-performance liquid chromatography coupled with photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MSn). The antioxidant capacity was assessed by two different methods (ABTS•+ and DPPH•), and the antineurodegenerative potential by the capacity of these extracts to inhibit the aforementioned related enzymes. The results showed that seed extracts presented a high content of phenolic compounds and a remarkable ability to scavenge ABTS•+ and DPPH•. Tyrosol, rutin, luteolin-7-glucoside, nüzhenide, oleuropein, and ligstroside were the main phenolic compounds identified in the extracts. ‘Galega’ was the most promising cultivar due to its high concentration of phenolic compounds, high antioxidant capacity, and remarkable inhibition of AChE, BChE, and TYR. It can be concluded that olive seed extracts may provide a sustainable source of bioactive compounds for medical and industrial applications.
Journal Article
Comparison of Antioxidant Capacity and Network Pharmacology of Phloretin and Phlorizin against Neuroinflammation in Traumatic Brain Injury
by
Granato, Daniel
,
Ongay, Kubra Kizil
,
Barreto, George E.
in
Antioxidants
,
Antioxidants - metabolism
,
bioactive compounds
2023
Neuroinflammation is a hallmark of traumatic brain injury (TBI)’s acute and chronic phases. Despite the medical and scientific advances in recent years, there is still no effective treatment that mitigates the oxidative and inflammatory damage that affects neurons and glial cells. Therefore, searching for compounds with a broader spectrum of action that can regulate various inflammatory signaling pathways is of clinical interest. In this study, we determined not only the in vitro antioxidant capacity of apple pomace phenolics, namely, phlorizin and its metabolite, phloretin, but we also hypothesize that the use of these bioactive molecules may have potential use in TBI. We explored the antioxidant effects of both compounds in vitro (DPPH, iron-reducing capacity (IRC), and Folin–Ciocalteu reducing capacity (FCRC)), and using network pharmacology, we investigated the proteins involved in their protective effects in TBI. Our results showed that the antioxidant properties of phloretin were superior to those of phlorizin in the DPPH (12.95 vs. 3.52 mg ascorbic acid equivalent (AAE)/L), FCRC (86.73 vs. 73.69 mg gallic acid equivalent (GAE)/L), and iron-reducing capacity (1.15 vs. 0.88 mg GAE/L) assays. Next, we examined the molecular signature of both compounds and found 11 proteins in common to be regulated by them and involved in TBI. Meta-analysis and GO functional enrichment demonstrated their implication in matrix metalloproteinases, p53 signaling, and cell secretion/transport. Using MCODE and Pearson’s correlation analysis, a subcluster was generated. We identified ESR1 (estrogen receptor alpha) as a critical cellular hub being regulated by both compounds and with potential therapeutic use in TBI. In conclusion, our study suggests that because of their vast antioxidant effects, probably acting on estrogen receptors, phloretin and phlorizin may be repurposed for TBI treatment due to their ease of obtaining and low cost.
Journal Article
Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy
by
Mattila, Pirjo
,
Fidelis, Marina
,
Kabbas Junior, Tufy
in
Agriculture - economics
,
antioxidant activity
,
Antioxidants - chemistry
2019
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US $1 trillion or even $ 2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Journal Article
Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes
by
Castangia, Ines
,
Hellström, Jarkko
,
Granato, Daniel
in
Anthocyanins - administration & dosage
,
Anthocyanins - chemistry
,
Anthocyanins - pharmacology
2021
The Brazilian berry scientifically known as jabuticaba is a fruit covered by a dark purple peel that is still rich in bioactives, especially polyphenols. Considering that, this work was aimed at obtaining an extract from the peel of jabuticaba fruits, identifying its main components, loading it in phospholipid vesicles specifically tailored for skin delivery and evaluating their biological efficacy. The extract was obtained by pressurized hot water extraction (PHWE), which is considered an easy and low dissipative method, and it was rich in polyphenolic compounds, especially flavonoids (ortho-diphenols and condensed tannins), anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) and gallic acid, which were responsible for the high antioxidant activity detected using different colorimetric methods (DPPH, FRAP, CUPRAC and metal chelation). To improve the stability and extract effectiveness, it was incorporated into ultradeformable phospholipid vesicles (transfersomes) that were modified by adding two different polymers (hydroxyethyl cellulose and sodium hyaluronate), thus obtaining HEcellulose-transfersomes and hyaluronan-transfersomes. Transfersomes without polymers were the smallest, as the addition of the polymer led to the formation of larger vesicles that were more stable in storage. The incorporation of the extract in the vesicles promoted their beneficial activities as they were capable, to a greater extent than the solution used as reference, of counteracting the toxic effect of hydrogen peroxide and even of speeding up the healing of a wound performed in a cell monolayer, especially when vesicles were enriched with polymers. Given that, polymer enriched vesicles may represent a good strategy to produce cosmetical and cosmeceutical products with beneficial properties for skin.
Journal Article
Mathematical and statistical methods in food science and technology
2014
Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.
Novel Food Processing and Extraction Technologies of High-Added Value Compounds from Plant Materials
by
Režek Jambrak, Anet
,
Barba, Francisco
,
Granato, Daniel
in
Amino acids
,
Antimicrobial agents
,
Antioxidants
2018
Some functional foods contain biologically active compounds (BAC) that can be derived from various biological sources (fruits, vegetables, medicinal plants, wastes, and by-products). Global food markets demand foods from plant materials that are “safe”, “fresh”, “natural”, and with “nutritional value” while processed in sustainable ways. Functional foods commonly incorporate some plant extract(s) rich with BACs produced by conventional extraction. This approach implies negative thermal influences on extraction yield and quality with a large expenditure of organic solvents and energy. On the other hand, sustainable extractions, such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), high-pressure assisted extraction (HPAE), high voltage electric discharges assisted extraction (HVED), pulsed electric fields assisted extraction (PEF), supercritical fluids extraction (SFE), and others are aligned with the “green” concepts and able to provide raw materials on industrial scale with optimal expenditure of energy and chemicals. This review provides an overview of relevant innovative food processing and extraction technologies applied to various plant matrices as raw materials for functional foods production.
Journal Article
Effects of Eriobotrya japonica (Thunb.) Lindl. Leaf Extract on Zebrafish Embryogenesis, Behavior, and Biochemical Pathways
by
Félix, Luís
,
Venâncio, Carlos
,
Granato, Daniel
in
Acetylcholinesterase - metabolism
,
Acids
,
Animals
2025
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical parameters. The 96 h LC50 was determined as 189.8 ± 4.5 mg/L, classifying the extract as practically non-toxic, according to OECD guidelines. Thereby, embryos were exposed for 90 h to 75 and 150 mg/L concentrations of the E. japonica leaf extract. While no significant effects were noted at the lowest concentration of 150 mg/L, significant developmental effects were observed, including reduced survival, delayed hatching, underdevelopment of the swim bladder, and retention of the yolk sac. These malformations were accompanied by marked behavioral impairments. Biochemical analysis revealed a concentration-dependent increase in superoxide dismutase (SOD) and catalase (CAT) activity, suggesting the activation of antioxidant defenses, despite no significant change in reactive oxygen species (ROS) levels. This indicates a potential compensatory redox response to a pro-oxidant signal. Additionally, the acetylcholinesterase (AChE) activity was significantly reduced at the highest concentration, which may have contributed to the observed neurobehavioral changes. While AChE inhibition is commonly associated with neurotoxicity, it is also a known therapeutic target in neurodegenerative diseases, suggesting concentration-dependent dual effects. In summary, the E. japonica leaf extract induced concentration-dependent developmental and behavioral effects in zebrafish embryos, while activating antioxidant responses without triggering oxidative damage. These findings highlight the extract’s potential bioactivity and underscore the need for further studies to explore its safety and therapeutic relevance.
Journal Article
Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study
by
Albuquerque, Bianca R.
,
Granato, Daniel
,
Câmara, José S.
in
adverse effects
,
alkaloids
,
analytical methods
2020
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Journal Article
Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts
by
Granato, Daniel
,
Barba, Francisco J.
,
García-Pérez, Jose V.
in
Anti-Inflammatory Agents - chemistry
,
Anti-Inflammatory Agents - isolation & purification
,
Anti-Inflammatory Agents - pharmacology
2020
Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial effects in humans because of the presence of a wide range of bioactive compounds. However, scarce information regarding the impact of extraction methods, such as ultrasound and types of solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition, no information is available on the effects of extraction methods and solvents on the inhibition of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile (Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves. Results showed that UAE extracted more carotenoids compared to conventional extraction, while the conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves). The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract obtained with ethanol for conventional extraction and four times higher for UAE. In general terms, hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive compounds for further development of high-added-value products.
Journal Article
(-)-Epigallocatechin-3-Gallate Attenuates the Adverse Reactions Triggered by Selenium Nanoparticles without Compromising Their Suppressing Effect on Peritoneal Carcinomatosis in Mice Bearing Hepatocarcinoma 22 Cells
by
Zhao, Guangshan
,
Hai, Dan
,
Granato, Daniel
in
(-)-epigallocatechin-3-gallate
,
Abdomen
,
Animals
2023
Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.
Journal Article