Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
159 result(s) for "Green, Allan G."
Sort by:
Antarctic Studies Show Lichens to be Excellent Biomonitors of Climate Change
Lichens have been used as biomonitors for multiple purposes. They are well-known as air pollution indicators around urban and industrial centers. More recently, several attempts have been made to use lichens as monitors of climate change especially in alpine and polar regions. In this paper, we review the value of saxicolous lichens for monitoring environmental changes in Antarctic regions. The pristine Antarctica offers a unique opportunity to study the effects of climate change along a latitudinal gradient that extends between 62° and 87° S. Both lichen species diversity and thallus growth rate seem to show significant correlations to mean annual temperature for gradients across the continent as well as to short time climate oscillation in the Antarctic Peninsula. Competition interactions appear to be small so that individual thalli develop in balance with environmental conditions and, as a result, can indicate the trends in productivity for discrete time intervals over long periods of time.
Environmental determinants of biocrust carbon fluxes across Europe: possibilities for a functional type approach
Background and aims Due to the well-known importance of biocrusts for several ecosystem properties linked to soil functionality, we aim to go deeper into the physiological performance of biocrusts components. Possible functional convergences in the physiology of biocrust constituents would facilitate the understanding of both species and genus distributional patterns and improve the possibility of modelling their response to climate change. Methods We measured gas exchange in the laboratory under controlled conditions of lichen- and moss-dominated biocrusts from four environmentally different locations in Europe. Field data were used to determine the natural hydration sources that drive metabolic activity of biocrusts. Results Our results show different activity drivers at the four sites. Within site analyses showed similar C fixation for the different crust types in the three sites without hydric stress whilst light use related parameters and respiration at 15 °C were similar in the between sites analyses. There were significant differences in water relations between the biocrusts types, with moss-dominated crusts showing higher maximum and optimum water contents. Conclusions The functional type approach for biocrusts can be justified from a physiological perspective when similar values are found in the within and between site analyses, the latter indicating habitat independent adaptation patterns. Our multi-site analyses for biocrusts functional performance provide comparisons of C fluxes and water relations in the plant-soil interface that will help to understand the adaptation ability of these communities to possible environmental changes.
Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts
Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO 2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using 14 CO 2 ) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.
A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctoriusL.)
Background The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality. Results We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic) bond at the Δ12 position. Conclusions In this study, we isolated an unusually large FAD2 gene family with 11 members from safflower. The seed expressed FAD2 oleate Δ12 desaturase genes identified in this study will provide candidate targets to manipulate the oleic acid level in safflower seed oil. Further, the divergent FAD2 enzymes with novel functionality could be used to produce rare fatty acids, such as crepenynic acid, in genetically engineered crop plants that are precursors for economically important phytoalexins and oleochemical products.
Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in the Seed Oil
Plant seeds have long been promoted as a production platform for novel fatty acids such as the ω3 long-chain (≥ C20) polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) commonly found in fish oil. In this article we describe the creation of a canola ( Brassica napus ) variety producing fish oil-like levels of DHA in the seed. This was achieved by the introduction of a microalgal/yeast transgenic pathway of seven consecutive enzymatic steps which converted the native substrate oleic acid to α-linolenic acid and, subsequently, to EPA, docosapentaenoic acid (DPA) and DHA. This paper describes construct design and evaluation, plant transformation, event selection, field testing in a wide range of environments, and oil profile stability of the transgenic seed. The stable, high-performing event NS-B50027-4 produced fish oil-like levels of DHA (9–11%) in open field trials of T3 to T7 generation plants in several locations in Australia and Canada. This study also describes the highest seed DHA levels reported thus far and is one of the first examples of a deregulated genetically modified crop with clear health benefits to the consumer.
Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN)
Here we report details of the European research initiative “Soil Crust International” (SCIN) focusing on the biodiversity of biological soil crusts (BSC, composed of bacteria, algae, lichens, and bryophytes) and on functional aspects in their specific environment. Known as the so-called “colored soil lichen community” (Bunte Erdflechtengesellschaft), these BSCs occur all over Europe, extending into subtropical and arid regions. Our goal is to study the uniqueness of these BSCs on the regional scale and investigate how this community can cope with large macroclimatic differences. One of the major aims of this project is to develop biodiversity conservation and sustainable management strategies for European BSCs. To achieve this, we established a latitudinal transect from the Great Alvar of Öland, Sweden in the north over Gössenheim, Central Germany and Hochtor in the Hohe Tauern National Park, Austria down to the badlands of Tabernas, Spain in the south. The transect stretches over 20° latitude and 2,300 m in altitude, including natural (Hochtor, Tabernas) and semi-natural sites that require maintenance such as by grazing activities (Öland, Gössenheim). At all four sites BSC coverage exceeded 30 % of the referring landscape, with the alpine site (Hochtor) reaching the highest cyanobacterial cover and the two semi-natural sites (Öland, Gössenheim) the highest bryophyte cover. Although BSCs of the four European sites share a common set of bacteria, algae (including cyanobacteria) lichens and bryophytes, first results indicate not only climate specific additions of species, but also genetic/phenotypic uniqueness of species between the four sites. While macroclimatic conditions are rather different, microclimatic conditions and partly soil properties seem fairly homogeneous between the four sites, with the exception of water availability. Continuous activity monitoring of photosystem II revealed the BSCs of the Spanish site as the least active in terms of photosynthetic active periods.
The spatial structure of Antarctic biodiversity
Patterns of environmental spatial structure lie at the heart of the most fundamental and familiar patterns of diversity on Earth. Antarctica contains some of the strongest environmental gradients on the planet and therefore provides an ideal study ground to test hypotheses on the relevance of environmental variability for biodiversity. To answer the pivotal question, \"How does spatial variation in physical and biological environmental properties across the Antarctic drive biodiversity?\" we have synthesized current knowledge on environmental variability across terrestrial, freshwater, and marine Antarctic biomes and related this to the observed biotic patterns. The most important physical driver of Antarctic terrestrial communities is the availability of liquid water, itself driven by solar irradiance intensity. Patterns of biota distribution are further strongly influenced by the historical development of any given location or region, and by geographical barriers. In freshwater ecosystems, free water is also crucial, with further important influences from salinity, nutrient availability, oxygenation, and characteristics of ice cover and extent. In the marine biome there does not appear to be one major driving force, with the exception of the oceanographic boundary of the Polar Front. At smaller spatial scales, ice cover, ice scour, and salinity gradients are clearly important determinants of diversity at habitat and community level. Stochastic and extreme events remain an important driving force in all environments, particularly in the context of local extinction and colonization or recolonization, as well as that of temporal environmental variability. Our synthesis demonstrates that the Antarctic continent and surrounding oceans provide an ideal study ground to develop new biogeographical models, including life history and physiological traits, and to address questions regarding biological responses to environmental variability and change.
The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens
Facilitative effects and plant—plant interactions are well known for higher plants, but there is a lack of information about their relevance in cryptogams. Additional information about facilitative effects between bryophytes and lichens would be an important contribution to recent research on positive plant—plant interactions, as these can have striking influences not only on the organisation of early successional terrestrial communities but also on succession dynamics by kick-starting ecosystem development through the import of key nutrients. We investigated and quantified these mechanisms between Peltigera rufescens and its associated mosses. Moss-associated thalli had a different morphology that led to several benefits from the association. They had 66% higher net photosynthetic rate and, because the majority of the gas exchange of lichen thalli took place through the lower surface, there was a further increase as the CO 2 concentration was >25% higher beneath moss-associated thalli. Microclimatic measurements showed that mean light levels were substantially lower and temperature extremes slightly ameliorated for moss-associated thalli. As a consequence, desiccation was slower which is, together with an increase in thallus thickness and water storage, the reason for extended periods of optimal net photosynthesis for the moss-associated thalli. All these benefits combined to produce a growth rate of the moss-associated thalli which was significantly higher, twice that of non-associated thalli [0.75 ± 0.4 vs. 0.30 ± 0.1 mm/month (mean ± SD)]. This appears to be the first demonstration of a strong mechanistic basis for facilitative effects between lichens and bryophytes.
Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production
Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.
High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing
We have genetically modified the fatty acid composition of cottonseed oil using the recently developed technique of hairpin RNA-mediated gene silencing to down-regulate the seed expression of two key fatty acid desaturase genes, ghSAD-1-encoding stearoyl-acyl-carrier protein Δ9-desaturase and ghFAD2-1-encoding oleoyl-phosphatidylcholine ω6-desaturase. Hairpin RNA-encoding gene constructs (HP) targeted against either ghSAD-1 or ghFAD2-1 were transformed into cotton (Gossypium hirsutum cv Coker 315). The resulting down-regulation of the ghSAD-1 gene substantially increased stearic acid from the normal levels of 2% to 3% up to as high as 40%, and silencing of the ghFAD2-1 gene resulted in greatly elevated oleic acid content, up to 77% compared with about 15% in seeds of untransformed plants. In addition, palmitic acid was significantly lowered in both high-stearic and high-oleic lines. Similar fatty acid composition phenotypes were also achieved by transformation with conventional antisense constructs targeted against the same genes, but at much lower frequencies than were achieved with the HP constructs. By intercrossing the high-stearic and high-oleic genotypes, it was possible to simultaneously down-regulate both ghSAD-1 and ghFAD2-1 to the same degree as observed in the individually silenced parental lines, demonstrating for the first time, to our knowledge, that duplex RNA-induced posttranslational gene silencing in independent genes can be stacked without any diminution in the degree of silencing. The silencing of ghSAD-1 and/or ghFAD2-1 to various degrees enables the development of cottonseed oils having novel combinations of palmitic, stearic, oleic, and linoleic contents that can be used in margarines and deep frying without hydrogenation and also potentially in high-value confectionery applications.