Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Greystoke, Alastair"
Sort by:
Practical implications to contemplate when considering radical therapy for stage III non-small-cell lung cancer
The type of patients with stage III non-small-cell lung cancer (NSCLC) selected for concurrent chemoradiotherapy (cCRT) varies between and within countries, with higher-volume centres treating patients with more co-morbidities and higher-stage disease. However, in spite of these disease characteristics, these patients have improved overall survival, suggesting that there are additional approaches that should be optimised and potentially standardised. This paper aims to review the current knowledge and best practices surrounding treatment for patients eligible for cCRT. Initially, this includes timely acquisition of the full diagnostic workup for the multidisciplinary team to comprehensively assess a patient for treatment, as well as imaging scans, patient history, lung function and genetic tests. Such information can provide prognostic information on how a patient will tolerate their cCRT regimen, and to perhaps limit the use of additional supportive care, such as steroids, which could impact on further treatments, such as immunotherapy. Furthermore, knowledge of the safety profile of individual double-platinum chemotherapy regimens and the technological advances in radiotherapy could aid in optimising patients for cCRT treatment, improving its efficacy whilst minimising its toxicities. Finally, providing patients with preparatory and ongoing support with input from dieticians, palliative care professionals, respiratory and care-of-the-elderly physicians during treatment may also help in more effective treatment delivery, allowing patients to achieve the maximum potential from their treatments.
Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer
Circulating tumor cells from patients with small-cell lung cancer can form tumors in mice, and their derived explants recapitulate the patients' response to chemotherapy. Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor with early dissemination and dismal prognosis, accounts for 15–20% of lung cancer cases and ∼200,000 deaths each year. Most cases are inoperable, and biopsies to investigate SCLC biology are rarely obtainable. Circulating tumor cells (CTCs), which are prevalent in SCLC, present a readily accessible 'liquid biopsy'. Here we show that CTCs from patients with either chemosensitive or chemorefractory SCLC are tumorigenic in immune-compromised mice, and the resultant CTC-derived explants (CDXs) mirror the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX. Most marked differences were observed between CDXs from patients with different clinical outcomes. These data demonstrate that CTC molecular analysis via serial blood sampling could facilitate delivery of personalized medicine for SCLC. CDXs are readily passaged, and these unique mouse models provide tractable systems for therapy testing and understanding drug resistance mechanisms.
Routes to Diagnosis in Lung Cancer—Do Socio-Demographics Matter? An English Population-Based Study
Objectives: Survival from lung cancer is worse in the UK than in some other countries, with late stage at diagnosis implicated in poor prognosis. The route and referral urgency by which patients obtain a diagnosis influence outcomes. This study investigated whether socio-demographic factors are associated with lung cancer routes to diagnosis in England. Materials and Methods: A total of 181,763 primary invasive lung cancers (ICD-10 C34.0-C34.9) diagnosed from 1 January 2012 to 31 December 2016 were abstracted from the English National Cancer Registration Database. Multivariable logistic regression was used to examine associations between patients’ socio-demographic characteristics and likelihood (adjusted odds ratios) of (i) emergency presentation versus all primary care-initiated routes and (ii) urgent (“two-week wait”/2WW) versus standard primary care-initiated referral. Models included the following factors: deprivation quintile of area of residence at diagnosis (IMD income domain); sex; age; ethnic group; rural/urban residence; and (in the emergency model) region. Results: Socio-demographic variations in diagnosis routes were observed. Patients presenting as emergencies (35.2%) were more likely to be 80 years of age or older, female, of non-White ethnicity, and resident in areas of greater deprivation or the London region. In contrast, 2WW patients (28.3%) were more likely to be aged between 50 and 69 years old, of White ethnicity, and resident in an area of greater deprivation or resident outside of an urban centre; diagnosis through 2WW did not vary by sex. Conclusions: Routes to diagnosis are subject to distinct socio-demographic patterning. Action is needed to ensure that new referral guidelines and lung cancer screening roll-out do not widen socio-demographic inequalities in diagnosis.
The National Lung Matrix Trial of personalized therapy in lung cancer
The majority of targeted therapies for non-small-cell lung cancer (NSCLC) are directed against oncogenic drivers that are more prevalent in patients with light exposure to tobacco smoke 1 – 3 . As this group represents around 20% of all patients with lung cancer, the discovery of stratified medicine options for tobacco-associated NSCLC is a high priority. Umbrella trials seek to streamline the investigation of genotype-based treatments by screening tumours for multiple genomic alterations and triaging patients to one of several genotype-matched therapeutic agents. Here we report the current outcomes of 19 drug–biomarker cohorts from the ongoing National Lung Matrix Trial, the largest umbrella trial in NSCLC. We use next-generation sequencing to match patients to appropriate targeted therapies on the basis of their tumour genotype. The Bayesian trial design enables outcome data from open cohorts that are still recruiting to be reported alongside data from closed cohorts. Of the 5,467 patients that were screened, 2,007 were molecularly eligible for entry into the trial, and 302 entered the trial to receive genotype-matched therapy—including 14 that re-registered to the trial for a sequential trial drug. Despite pre-clinical data supporting the drug–biomarker combinations, current evidence shows that a limited number of combinations demonstrate clinically relevant benefits, which remain concentrated in patients with lung cancers that are associated with minimal exposure to tobacco smoke. Current outcomes are reported from the ongoing National Lung Matrix Trial, an umbrella trial for the treatment of non-small-cell lung cancer in which patients are triaged according to their tumour genotype and matched with targeted therapeutic agents.
Are there socio-economic inequalities in utilization of predictive biomarker tests and biological and precision therapies for cancer? A systematic review and meta-analysis
Background Novel biological and precision therapies and their associated predictive biomarker tests offer opportunities for increased tumor response, reduced adverse effects, and improved survival. This systematic review determined if there are socio-economic inequalities in utilization of predictive biomarker tests and/or biological and precision cancer therapies. Methods MEDLINE, Embase, Scopus, CINAHL, Web of Science, PubMed, and PsycINFO were searched for peer-reviewed studies, published in English between January 1998 and December 2019. Observational studies reporting utilization data for predictive biomarker tests and/or cancer biological and precision therapies by a measure of socio-economic status (SES) were eligible. Data was extracted from eligible studies. A modified ISPOR checklist for retrospective database studies was used to assess study quality. Meta-analyses were undertaken using a random-effects model, with sub-group analyses by cancer site and drug class. Unadjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed for each study. Pooled utilization ORs for low versus high socio-economic groups were calculated for test and therapy receipt. Results Among 10,722 citations screened, 62 papers (58 studies; 8 test utilization studies, 37 therapy utilization studies, 3 studies on testing and therapy, 10 studies without denominator populations or which only reported mean socio-economic status) met the inclusion criteria. Studies reported on 7 cancers, 5 predictive biomarkers tests, and 11 biological and precision therapies. Thirty-eight studies (including 1,036,125 patients) were eligible for inclusion in meta-analyses. Low socio-economic status was associated with modestly lower predictive biomarker test utilization (OR 0.86, 95% CI 0.71–1.05; 10 studies) and significantly lower biological and precision therapy utilization (OR 0.83, 95% CI 0.75–0.91; 30 studies). Associations with therapy utilization were stronger in lung cancer (OR 0.71, 95% CI 0.51–1.00; 6 studies), than breast cancer (OR 0.93, 95% CI 0.78–1.10; 8 studies). The mean study quality score was 6.9/10. Conclusions These novel results indicate that there are socio-economic inequalities in predictive biomarker tests and biological and precision therapy utilization. This requires further investigation to prevent differences in outcomes due to inequalities in treatment with biological and precision therapies.
A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours
Background Combined focal adhesion kinase (FAK) and MEK inhibition may provide greater anticancer effect than FAK monotherapy. Methods This dose-finding phase Ib study (adaptive 3 + 3 design) determined the maximum tolerated dose (MTD) of trametinib and the FAK inhibitor GSK2256098 in combination. Eligible patients had mesothelioma or other solid tumours with probable mitogen activated protein kinase pathway activation. Adverse events (AEs), dose-limiting toxicities, disease progression and pharmacokinetics/pharmacodynamics were analysed. Results Thirty-four subjects were enrolled. The GSK2256098/trametinib MTDs were 500 mg twice daily (BID)/0.375 mg once daily (QD) (high/low) and 250 mg BID/0.5 mg QD (low/high). The most common AEs were nausea, diarrhoea, decreased appetite, pruritus, fatigue and rash; none were grade 4. Systemic exposure to trametinib increased when co-administered with GSK2256098, versus trametinib monotherapy; GSK2256098 pharmacokinetics were unaffected by concomitant trametinib. Median progression-free survival (PFS) was 11.8 weeks (95% CI: 6.1–24.1) in subjects with mesothelioma and was longer with Merlin-negative versus Merlin-positive tumours (15.0 vs 7.3 weeks). Conclusions Trametinib exposure increased when co-administered with GSK2256098, but not vice versa . Mesothelioma patients with loss of Merlin had longer PFS than subjects with wild-type, although support for efficacy with this combination was limited. Safety profiles were acceptable up to the MTD.
Immunotherapy in older patients with non-small cell lung cancer: Young International Society of Geriatric Oncology position paper
Immunotherapy with checkpoint inhibitors against programmed cell death receptor (PD-1) and programmed cell death ligand (PD-L1) has been implemented in the treatment pathway of patients with non-small cell lung cancer (NSCLC) from locally advanced disease to the metastatic setting. This approach has resulted in improved survival and a more favourable toxicity profile when compared with chemotherapy. Following the successful introduction of single-agent immunotherapy, current clinical trials are focusing on combination treatments with chemotherapy or radiotherapy or even other immunotherapeutic agents. However, most of the data available from these trials are derived from, and therefore might be more applicable to younger and fitter patients rather than older and often frail lung cancer real-world patients. This article provides a detailed review of these immunotherapy agents with a focus on the data available regarding older NSCLC patients and makes recommendations to fill evidence gaps in this patient population.
A case of malignant hyperlactaemic acidosis appearing upon treatment with the mono-carboxylase transporter 1 inhibitor AZD3965
A 47-year-old man with metastatic melanoma presented with refractory hyperlactaemic acidosis following the first dose of the mono-carboxylase transporter 1 inhibitor AZD3965 within a “first time in man” clinical trial. The mechanism of the agent and the temporal relationship suggested that this event was potentially drug related and recruitment was suspended. However, urinary metabolomics showed extensive abnormalities even prior to drug administration, leading to investigations for an underlying metabolic disorder. The lack of clinical symptoms from the elevated lactate and low blood glucose suggested a diagnosis of “hyper-Warburgism”, where the high tumour burden was associated with extensive glucose uptake and lactate efflux from malignant cells, and the subsequent impact on blood biochemistry. This was supported by an FDG-PET scan showing extensive glucose uptake in numerous metastases and lack of uptake in the brain. A review of the literature showed 16 case reports of “hyper-Warburgism” in non-haematological malignancies, none of them with melanoma, with most associated with a poor outcome. The patient was treated symptomatically, but died 2 months later. The development of AZD3965 continues with the exclusion of patients with elevated plasma lactate at screening added to the protocol as a safety measure. Trial identification number ClinicalTrials.Gov. NCT01791595.
Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): a single-arm, open-label, phase 2 trial
Genetically stratified therapy for malignant mesothelioma is unavailable. Mesotheliomas frequently harbour loss of the chromosome 9p21.3 locus (CDKN2A–MTAP), which is associated with shorter overall survival due to loss of the tumour suppressor p16ink4A, an endogenous suppressor of cyclin-dependent kinase (CDK)4 and CDK6. Genetic restoration of p16ink4A suppresses mesothelioma in preclinical models, underpinning the rationale for targeting CDK4 and CDK6 in p16ink4A-negative mesothelioma. We developed a multicentre, stratified, phase 2 trial to test this hypothesis. The MiST2 study was a single-arm, open-label, phase 2 clinical trial done two UK centres. Patients older than 18 years with any histologically confirmed subtype of mesothelioma (pleural or peritoneal) with radiological progression after at least one course of platinum-based chemotherapy were molecularly screened by immunohistochemistry for p16ink4A. Patients with p16ink4A-negative mesothelioma were eligible for inclusion in the study. Patients were required to have measurable disease by modified Response Evaluation Criteria in Solid Tumours version 1.1 for malignant mesothelioma, a predicted life expectancy of at least 12 weeks, and an Eastern Cooperative Oncology Group performance status score of 0–1. Patients received oral abemaciclib 200 mg twice daily, administered in 28-day cycles for 24 weeks. The primary endpoint was the disease control rate (patients with complete responses, partial responses, or stable disease) at 12 weeks. The null hypothesis could be rejected if at least 11 patients had disease control. The efficacy and safety populations were defined as all patients who received at least one dose of the study drug. The study is registered with ClinicalTrials.gov, NCT03654833, and is ongoing (but MiST2 is now closed). Between Sept 31, 2019, and March 2, 2020, 27 eligible patients consented to molecular screening. The median follow-up was 18·4 weeks (IQR 6·7–23·9). One patient was excluded before treatment because of a serious adverse event before study drug allocation. 26 (100%) of 26 treated patients were p16ink4A deficient and received at least one dose of abemaciclib. Disease control at 12 weeks was reported in 14 (54%) of 26 patients (95% CI 36–71). Grade 3 or worse treatment-related adverse events (of any cause) occurred in eight (27%) of 26 patients (diarrhoea, dyspnoea, thrombocytopenia, vomiting, urinary tract infection, increased alanine aminotransferase, ascites, chest infection or suspected chest infection, neutropenic sepsis, alopecia, blood clot left calf, fall [broken neck and collar bone], haemoptysis, lower respiratory tract infection, and pulmonary embolism). Grade 3 or worse treatment-related adverse events occurred in three (12%) of 26 patients (diarrhoea, thrombocytopenia, vomiting, increased alanine aminotransferase, and pulmonary embolism). Serious adverse events occurred in six (23%) of 26 patients, leading to treatment discontinuation in one (4%) patient (diarrhoea, urinary tract infection, chest infection, neutropenic sepsis, fall [broken neck and collar bone], haemoptysis, lower respiratory tract infection, and pulmonary embolism). One patient had a serious adverse event related to abemaciclib (diarrhoea). One (4%) of 26 patients died from an adverse event (neutropenic sepsis). This study met its primary endpoint, showing promising clinical activity of abemaciclib in patients with p16ink4A-negative mesothelioma who were previously treated with chemotherapy, and warrants its further investigation in a randomised study as a targeted stratified therapy. University of Leicester, Asthma UK and British Lung Foundation Partnership, and the Victor Dahdaleh Foundation.
Randomised controlled trial of intermittent vs continuous energy restriction during chemotherapy for early breast cancer
BackgroundExcess adiposity at diagnosis and weight gain during chemotherapy is associated with tumour recurrence and chemotherapy toxicity. We assessed the efficacy of intermittent energy restriction (IER) vs continuous energy restriction (CER) for weight control and toxicity reduction during chemotherapy.MethodsOne hundred and seventy-two women were randomised to follow IER or CER throughout adjuvant/neoadjuvant chemotherapy. Primary endpoints were weight and body fat change. Secondary endpoints included chemotherapy toxicity, cardiovascular risk markers, and correlative markers of metabolism, inflammation and oxidative stress.ResultsPrimary analyses showed non-significant reductions in weight (−1.1 (−2.4 to +0.2) kg, p = 0.11) and body fat (−1.0 (−2.1 to +0.1) kg, p = 0.086) in IER compared with CER. Predefined secondary analyses adjusted for body water showed significantly greater reductions in weight (−1.4 (−2.5 to −0.2) kg, p = 0.024) and body fat (−1.1 (−2.1 to −0.2) kg, p = 0.046) in IER compared with CER. Incidence of grade 3/4 toxicities were comparable overall (IER 31.0 vs CER 36.5%, p = 0.45) with a trend to fewer grade 3/4 toxicities with IER (18%) vs CER (31%) during cycles 4–6 of primarily taxane therapy (p = 0.063).ConclusionsIER is feasible during chemotherapy. The potential efficacy for weight control and reducing toxicity needs to be tested in future larger trials.Clinical trial registrationISRCTN04156504.