Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Item TypeItem Type
-
YearFrom:-To:
-
More FiltersMore FiltersIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
3,168
result(s) for
"Gu, Luo"
Sort by:
Effects of probiotics on type II diabetes mellitus: a meta-analysis
2020
Objective
The purpose of the present study was to evaluate the effectiveness of probiotics on type II diabetes mellitus (T2DM).
Methods
We performed a comprehensive search on PubMed, Web of Science, China National Knowledge Infrastructure, Chinese Scientific Journal Databases, Wan Fang database and China biology medicine disc for relevant studies published before June 2019. Glycated hemoglobin A1c (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) and fasting blood glucose (FBG) were used as indicators for T2DM. Inverse-variance weighted mean difference (WMD) with 95% confidence interval (CI) was calculated for the mean HbA1c, FBG and HOMA-IR changes from baseline.
Results
15 randomized controlled trials (RCT) with a total of 902 participants were included into the meta-analysis. Considering the clinical heterogeneity caused by variation of dosage and duration of probiotic treatment, random-effects model was used to estimate the pooled WMD. Significantly greater reduction in HbA1c% (WMD = − 0.24, 95% CI [− 0.44, − 0.04],
p
= 0.02), FBG (WMD = − 0.44 mmol/L, 95% CI [− 0.74, − 0.15],
p
= 0.003) and HOMA-IR (WMD = − 1.07, 95% CI [− 1.58, − 0.56],
p
< 0.00001) were observed in probiotics treated group. Further sensitivity analysis verified the reliability and stability of our results.
Conclusion
The results of our meta-analysis indicated that probiotics treatment may reduce HbA1c, FBG and insulin resistance level in T2DM patients. More clinical data and research into the mechanism of probiotics are needed to clarify the role of probiotics in T2DM.
Journal Article
Biomaterials and emerging anticancer therapeutics: engineering the microenvironment
2016
This Opinion article discusses the contributions of bioengineering, especially biomaterials engineering, to our understanding of cancer biology and to the development of emerging therapeutic strategies such as cancer immunotherapy.
The microenvironment is increasingly recognized to have key roles in cancer, and biomaterials provide a means to engineer microenvironments both
in vitro
and
in vivo
to study and manipulate cancer.
In vitro
cancer models using 3D matrices recapitulate key elements of the tumour microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come.
Journal Article
The living interface between synthetic biology and biomaterial design
by
Tang, Sindy K. Y.
,
Chaudhuri, Ovijit
,
Kloxin, April M.
in
631/553/552
,
631/61/54
,
639/301/54/2295
2022
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to ‘living’ materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
This Perspective reviews the complementary developments in synthetic biology and biomaterials and discusses how convergence of these two fields creates a promising design strategy for the fabrication of tailored living materials for medicine and biotechnology.
Journal Article
Antibacterial Effect of Shrimp By-Products Hydrolysate on Specific Spoilage Organisms of Squid
2023
In order to further develop and utilize shrimp processing by-products, in this study, a novel antibacterial hydrolysate of shrimp by-products by pepsin hydrolysis (SPH) was prepared. The antibacterial effect of SPH on specific spoilage organisms of squid after end storage at room temperature (SE–SSOs) was investigated. SPH showed an antibacterial effect on the growth of SE–SSOs, with (23.4 ± 0.2) mm of inhibition zone diameter. The cell permeability of SE–SSOs was enhanced after SPH treatment for 12 h. Some bacteria were twisted and shrunk, while pits and pores formed and intracellular contents leaked under scanning electron microscopy observation. The flora diversity of SE–SSOs treated with SPH was determined by a 16S rDNA sequencing technique. Results showed that SE–SSOs were mainly composed of the phyla of Firmicutes and Proteobacteria, among which Paraclostridium (47.29%) and Enterobacter (38.35%) were dominant genera. SPH treatment resulted in a significant reduction in the relative abundance of the genus Paraclostridium and increased the abundance of Enterococcus. Linear discriminant analysis (LDA) of LEfSe conveyed that SPH treatment had a significant impact on altering the bacterial structure of SE–SSOs. The 16S PICRUSt of Cluster of Orthologous Group (COG) annotation revealed that SPH treatment for 12 h could significantly increase the function of transcription level [K], while SPH treatment for 24 h could downregulate post-translational modifications, protein turnover, and chaperone metabolism functions [O]. In conclusion, SPH has a proper antibacterial effect on SE–SSOs and can change the flora structure of SE–SSOs. These findings will provide a technical basis for the development of inhibitors of squid SSOs.
Journal Article
Different Regulatory Effects of Heated Products and Maillard Reaction Products of Half-Fin Anchovy Hydrolysates on Intestinal Antioxidant Defense in Healthy Animals
2023
The oxidative state of intestinal tracts of healthy animals were investigated after short-term intake of half-fin anchovy hydrolysates (HAHp) and their thermal or Maillard reaction products (MRPs). After one month of continuous oral gavage of HAHp, HAHp-heated products (HAHp-H), the MRPs of HAHp with 3% of glucose (HAHp-3%G MRPs), and the MRPs of HAHp with 3% of fructose (HAHp-3%F MRPs) at a dose of 1.0 g/kg of body weight per day into healthy ICR male mice, the concentrations of serum low-density and high-density lipoprotein cholesterol did not significantly change compared to the control group (CK, gavage with saline). Similar results were found for the interleukin-6 concentrations of all groups. By comparison, HAHp-H, HAHp-3%G MRPs, and HAHp-3%F MRPs administration decreased serum tumor necrosis factor-α concentration as compared to the CK group (p < 0.05). No histological damage was observed in the jejunum, ileum, and colonic tissues of all groups. However, HAHp-H treatment induced higher upregulation of Kelch-like ECH-associated protein 1, transcription factors Nrf-2, associated protective phase-II enzymes of NAD(P)H: quinine oxidoreductase-1, and hemoxygenase-1 in colon tissue, as well as higher upregulation of endogenous antioxidant enzymes, including copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase 2 than other groups (p < 0.05). Additionally, increases in Nε-carboxymethyllysine expression in the colonic tissues of all groups were consistent with their increased oligopeptide transporter 1 expressions. Our results suggest that the thermal products of HAHp might have a broad application prospect in improving antioxidant defense in vivo in healthy animals.
Journal Article
Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells
2019
Three-dimensional (3D) tissue-engineered models of the blood-brain barrier (BBB) recapitulate
in vivo
shear stress, cylindrical geometry, and cell-ECM interactions. Here we address four issues associated with BBB models: cell source, barrier function, cryopreservation, and matrix stiffness. We reproduce a directed differentiation of brain microvascular endothelial cells (dhBMECs) from two fluorescently labeled human induced pluripotent stem cell lines (hiPSCs) and demonstrate physiological permeability of Lucifer yellow over six days. Microvessels formed from cryopreserved dhBMECs show expression of BBB markers and maintain physiological barrier function comparable to non-cryopreserved cells. Microvessels displaying physiological barrier function are formed in collagen I hydrogels with stiffness matching that of human brain. The dilation response of microvessels was linear with increasing transmural pressure and was dependent on matrix stiffness. Together these results advance capabilities for tissue-engineered BBB models.
Journal Article
Redox-tunable isoindigos for electrochemically mediated carbon capture
2024
Efficient CO
2
separation technologies are essential for mitigating climate change. Compared to traditional thermochemical methods, electrochemically mediated carbon capture using redox-tunable sorbents emerges as a promising alternative due to its versatility and energy efficiency. However, the undesirable linear free-energy relationship between redox potential and CO
2
binding affinity in existing chemistry makes it fundamentally challenging to optimise key sorbent properties independently via chemical modifications. Here, we demonstrate a design paradigm for electrochemically mediated carbon capture sorbents, which breaks the undesirable scaling relationship by leveraging intramolecular hydrogen bonding in isoindigo derivatives. The redox potentials of isoindigos can be anodically shifted by >350 mV to impart sorbents with high oxygen stability without compromising CO
2
binding, culminating in a system with minimised parasitic reactions. With the synthetic space presented, our effort provides a generalisable strategy to finetune interactions between redox-active organic molecules and CO
2
, addressing a longstanding challenge in developing effective carbon capture methods driven by non-conventional stimuli.
Electrochemically-mediated carbon capture has good energy efficiency and potential in carbon dioxide separation, but optimisation of these systems is challenging. Here, the authors report the use of isoindigo derivatives to give fine-tuned interactions with CO
2
for carbon capture methods.
Journal Article
Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells
by
Gu, Luo
,
Mooney, David J.
,
O’Neil, Alison
in
Alginates - chemistry
,
Alginates - pharmacology
,
Animals
2018
Variations in a multitude of material microenvironmental properties have been observed across tissues in vivo, and these have profound effects on cell phenotype. Phenomenological experiments have suggested that certain of these features of the physical microenvironment, such as stiffness, could sensitize cells to other features; meanwhile, mechanistic studies have detailed a number of biophysical mechanisms for this sensing. However, the broad molecular consequences of these potentially complex and nonlinear interactions bridging from biophysical sensing to phenotype have not been systematically characterized, limiting the overall understanding and rational deployment of these biophysical cues. Here, we explore these interactions by employing a 3D cell culture system that allows for the independent control of culture substrate stiffness, stress relaxation, and adhesion ligand density to systematically explore the transcriptional programs affected by distinct combinations of biophysical parameters using RNA-seq. In mouse mesenchymal stem cells and human cortical neuron progenitors, we find dramatic coupling among these substrate properties, and that the relative contribution of each property to changes in gene expression varies with cell type. Motivated by the bioinformatic analysis, the stiffness of hydrogels encapsulating mouse mesenchymal stem cells was found to regulate the secretion of a wide range of cytokines, and to accordingly influence hematopoietic stem cell differentiation in a Transwell coculture model. These results give insights into how biophysical features are integrated by cells across distinct tissues and offer strategies to synthetic biologists and bioengineers for designing responses to a cell’s biophysical environment.
Journal Article
Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration
by
Du, Jun
,
Hu, Zhenzhen
,
Gu, Luo
in
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
,
Biology
2012
The Dishevelled (Dvl) and Dishevelled-associated activator of morphogenesis 1 (Daam1) pathway triggered by Wnt5a regulates cellular polarity during development and tissue homoeostasis. However, Wnt5a signaling in breast cancer progression remains poorly defined.
We showed here that Wnt5a activated Dvl2, Daam1 and RhoA, and promoted migration of breast cancer cells, which was, however, abolished by Secreted Frizzled-related protein 2 (sFRP2) pretreatment. Dominant negative Dvl2 mutants or Dvl2 siRNA significantly decreased Wnt5a-induced Daam1/RhoA activation and cell migration. Ectopic expression of N-Daam1, a dominant negative mutant, or Daam1 siRNA remarkably inhibited Wnt5a-induced RhoA activation, stress fiber formation and cell migration. Ectopic expression of dominant negative RhoA (N19) or C3 exoenzyme transferase, a Rho inhibitor, decreased Wnt5a-induced stress fiber formation and cell migration.
Taken together, we demonstrated for the first time that Wnt5a promotes breast cancer cell migration via Dvl2/Daam1/RhoA.
Journal Article