Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
85
result(s) for
"Guiguen, Yann"
Sort by:
The rise and fall of the ancient northern pike master sex-determining gene
by
Larson, Wesley A
,
Tringali, Mike
,
Verreycken, Hugo
in
Animals
,
Biodiversity and Ecology
,
Cloning
2021
The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike ( Esox lucius ) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.
Journal Article
Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish
by
Guiguen, Yann
,
Lescat, Laury
,
Salin, Bénédicte
in
Alternative splicing
,
Autophagy
,
Carbohydrates
2020
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.
Journal Article
A Y-linked anti-Müllerian hormone type-II receptor is the sex-determining gene in ayu, Plecoglossus altivelis
by
Guiguen, Yann
,
Wang, Liu
,
Nakamoto, Masatoshi
in
Animals
,
Anti-Müllerian hormone
,
Biochemistry, Molecular Biology
2021
Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis , belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene ( amhr2bY ) was found within these male-specific regions, distinct from the autosomal copy of amhr2 . Expression of the Y-linked amhr2 gene was male-specific in sox9b -positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.
Journal Article
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2
by
Guiguen, Yann
,
Grimm, Sara A
,
Institut National de la Santé et de la Recherche Médicale (Inserm) (France)
in
13/51
,
14/19
,
14/35
2019
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Journal Article
The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway
2018
Evolutionary novelties require rewiring of transcriptional networks and/or the evolution of new gene functions. Sex determination (SD), one of the most plastic evolutionary processes, requires such novelties. Studies on the evolution of vertebrate SD revealed that new master SD genes are generally recruited from genes involved in the downstream SD regulatory genetic network. Only a single exception to this rule is currently known in vertebrates: the intriguing case of the salmonid master SD gene (sdY), which arose from duplication of an immune-related gene. This exception immediately posed the question of how a gene outside from the classical sex differentiation cascade could acquire its function as a male SD gene. Here we show that SdY became integrated in the classical vertebrate sex differentiation cascade by interacting with the Forkhead box domain of the female-determining transcription factor, Foxl2. In the presence of Foxl2, SdY is translocated to the nucleus where the SdY:Foxl2 complex prevents activation of the aromatase (cyp19a1a) promoter in cooperation with Nr5a1 (Sf1). Hence, by blocking a positive loop of regulation needed for the synthesis of estrogens in the early differentiating gonad, SdY disrupts a preset female differentiation pathway, consequently allowing testicular differentiation to proceed. These results also suggest that the evolution of unusual vertebrate master sex determination genes recruited from outside the classical pathway like sdY is strongly constrained by their ability to interact with the canonical gonadal differentiation pathway.
Journal Article
Lessons from an unusual vertebrate sex-determining gene
by
Guiguen, Yann
,
The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry ; Texas State University
,
Part of this work was supported by Agence Nationale de la Recherche (ANR) grant no. ANR ANR-11-BSV7-0016 (SDS project) and grants to M.S. by the Deutsche Forschungsgemeinschaft (Scha408/12-1, 10-1)
in
Life Sciences
,
Review
2021
So far, very few sex-determining genes have been identified in vertebrates and most of them, the so-called ‘usual suspects’, evolved from genes which fulfil essential functions during sexual development and are thus already tightly linked to the process that they now govern. The single exception to this ‘usual suspects’ rule in vertebrates so far is the conserved salmonid sex-determining gene, sdY (sexually dimorphic on the Y chromosome), that evolved from a gene known to be involved in regulation of the immune response. It is contained in a jumping sex locus that has been transposed or translocated into different ancestral autosomes during the evolution of salmonids. This special feature of sdY , i.e. being inserted in a ‘jumping sex locus’, could explain how salmonid sex chromosomes remain young and undifferentiated to escape degeneration. Recent knowledge on the mechanism of action of sdY demonstrates that it triggers its sex-determining action by deregulating oestrogen synthesis that is a conserved and crucial pathway for ovarian differentiation in vertebrates. This result suggests that sdY has evolved to cope with a pre-existing sex differentiation regulatory network. Therefore, ‘limited options’ for the emergence of new master sex-determining genes could be more constrained by their need to tightly interact with a conserved sex differentiation regulatory network rather than by being themselves ‘usual suspects’, already inside this sex regulatory network. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Journal Article
Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies
2017
transcriptome assembly of short reads is now a common step in expression analysis of organisms lacking a reference genome sequence. Several software packages are available to perform this task. Even if their results are of good quality it is still possible to improve them in several ways including redundancy reduction or error correction. Trinity and Oases are two commonly used
transcriptome assemblers. The contig sets they produce are of good quality. Still, their compaction (number of contigs needed to represent the transcriptome) and their quality (chimera and nucleotide error rates) can be improved.
We built a
RNA-Seq Assembly Pipeline (DRAP) which wraps these two assemblers (Trinity and Oases) in order to improve their results regarding the above-mentioned criteria. DRAP reduces from 1.3 to 15 fold the number of resulting contigs of the assemblies depending on the read set and the assembler used. This article presents seven assembly comparisons showing in some cases drastic improvements when using DRAP. DRAP does not significantly impair assembly quality metrics such are read realignment rate or protein reconstruction counts.
Transcriptome assembly is a challenging computational task even if good solutions are already available to end-users, these solutions can still be improved while conserving the overall representation and quality of the assembly. The
RNA-Seq Assembly Pipeline (DRAP) is an easy to use software package to produce compact and corrected transcript set. DRAP is free, open-source and available under GPL V3 license at http://www.sigenae.org/drap.
Journal Article
The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids
by
Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
,
Guiguen, Yann
,
Guyomard, René, R
in
Agricultural sciences
,
Aquaculture
,
Chromosomes
2013
All salmonid species investigated to date have been characterized with a male heterogametic sex-determination system. However, as these species do not share any Y-chromosome conserved synteny, there remains a debate on whether they share a common master sex-determining gene. In this study, we investigated the extent of conservation and evolution of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene, sdY (sexually dimorphic on the Y-chromosome), in 15 different species of salmonids. We found that the sdY sequence is highly conserved in all salmonids and that sdY is a male-specific Y-chromosome gene in the majority of these species. These findings demonstrate that most salmonids share a conserved sex-determining locus and also strongly suggest that sdY may be this conserved master sex-determining gene. However, in two whitefish species (subfamily Coregoninae), sdY was found both in males and females, suggesting that alternative sex-determination systems may have also evolved in this family. Based on the wide conservation of sdY as a male-specific Y-chromosome gene, efficient and easy molecular sexing techniques can now be developed that will be of great interest for studying these economically and environmentally important species.
Journal Article
Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements
by
Wilhelm, Dagmar
,
Comprehensive Cancer Center Mainfranken ; University Clinic Würzburg
,
Guiguen, Yann
in
Analysis
,
Animals
,
Animals, Genetically Modified
2018
Background - Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results - We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions - Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.
Journal Article
A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas)
by
de Oliveira, Marcos A.
,
Guiguen, Yann
,
de Almeida, Fernanda L.
in
631/181/2474
,
631/208/721
,
631/208/726
2021
Arapaima gigas
is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified
id2bbY
, a duplicated copy of the
inhibitor of DNA binding 2b
(
id2b
) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for
id2bbY
was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog,
id2ba
, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm
id2bbY
as a prime candidate for the master sex-determiner. Acting through the TGFβ signaling pathway,
id2bbY
from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.
Journal Article