Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
145 result(s) for "Hamill, Thomas M."
Sort by:
Evaluating Methods to Account for System Errors in Ensemble Data Assimilation
Inflation of ensemble perturbations is employed in ensemble Kalman filters to account for unrepresented error sources. The authors propose a multiplicative inflation algorithm that inflates the posterior ensemble in proportion to the amount that observations reduce the ensemble spread, resulting in more inflation in regions of dense observations. This is justified since the posterior ensemble variance is more affected by sampling errors in these regions. The algorithm is similar to the “relaxation to prior” algorithm proposed by Zhang et al., but it relaxes the posterior ensemble spread back to the prior instead of the posterior ensemble perturbations. The new inflation algorithm is compared to the method of Zhang et al. and simple constant covariance inflation using a two-level primitive equation model in an environment that includes model error. The new method performs somewhat better, although the method of Zhang et al. produces more balanced analyses whose ensemble spread grows faster. Combining the new multiplicative inflation algorithm with additive inflation is found to be superior to either of the methods used separately. Tests with large and small ensembles, with and without model error, suggest that multiplicative inflation is better suited to account for unrepresented observation-network-dependent assimilation errors such as sampling error, while model errors, which do not depend on the observing network, are better treated by additive inflation. A combination of additive and multiplicative inflation can provide a baseline for evaluating more sophisticated stochastic treatments of unrepresented background errors. This is demonstrated by comparing the performance of a stochastic kinetic energy backscatter scheme with additive inflation as a parameterization of model error.
THE TIGGE PROJECT AND ITS ACHIEVEMENTS
The International Grand Global Ensemble (TIGGE) was a major component of The Observing System Research and Predictability Experiment (THORPEX) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics. The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a multimodel grand ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed. TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world and are a focus of multimodel ensemble research. Their extratropical transition also has a major impact on the skill of midlatitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extratropical cyclones and storm tracks. Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles. Finally, the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill.
Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales
Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates vary significantly among the estimates. Temporal correlations among datasets are large at annual and daily time scales, suggesting that compensating bias errors at annual and random errors at daily time scales dominate the differences. However, the signal-to-noise ratio at intermediate (monthly) time scales can be large enough to result in high correlations overall. It is shown that differences on annual time scales and continental regions are around 0.8 mm day−1, which corresponds to 23 W m−2. These wide variations in the estimates, even for global averages, highlight the need for better constrained precipitation products in the future.
Verification of TIGGE Multimodel and ECMWF Reforecast-Calibrated Probabilistic Precipitation Forecasts over the Contiguous United States
Probabilistic quantitative precipitation forecasts (PQPFs) were generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database from July to October 2010 using data from Europe (ECMWF), the United Kingdom [Met Office (UKMO)], the United States (NCEP), and Canada [Canadian Meteorological Centre (CMC)]. Forecasts of 24-h accumulated precipitation were evaluated at 1° grid spacing within the contiguous United States against analysis data based on gauges and bias-corrected radar data. PQPFs from ECMWF’s ensembles generally had the highest skill of the raw ensemble forecasts, followed by CMC. Those of UKMO and NCEP were less skillful. PQPFs from CMC forecasts were the most reliable but the least sharp, and PQPFs from NCEP and UKMO ensembles were the least reliable but sharper. Multimodel PQPFs were more reliable and skillful than individual ensemble prediction system forecasts. The improvement was larger for heavier precipitation events [e.g., >10 mm (24 h) −1 ] than for smaller events [e.g., >1 mm (24 h) −1 ]. ECMWF ensembles were statistically postprocessed using extended logistic regression and the five-member weekly reforecasts for the June–November period of 2002–09, the period where precipitation analyses were also available. Multimodel ensembles were also postprocessed using logistic regression and the last 30 days of prior forecasts and analyses. The reforecast-calibrated ECMWF PQPFs were much more skillful and reliable for the heavier precipitation events than ECMWF raw forecasts but much less sharp. Raw multimodel PQPFs were generally more skillful than reforecast-calibrated ECMWF PQPFs for the light precipitation events but had about the same skill for the higher-precipitation events; also, they were sharper but somewhat less reliable than ECMWF reforecast-based PQPFs. Postprocessed multimodel PQPFs did not provide as much improvement to the raw multimodel PQPF as the reforecast-based processing did to the ECMWF forecast. The evidence presented here suggests that all operational centers, even ECMWF, would benefit from the open, real-time sharing of precipitation forecast data and the use of reforecasts.
Using Artificial Neural Networks for Generating Probabilistic Subseasonal Precipitation Forecasts over California
Forecast skill of numerical weather prediction (NWP) models for precipitation accumulations over California is rather limited at subseasonal time scales, and the low signal-to-noise ratio makes it challenging to extract information that provides reliable probabilistic forecasts. A statistical postprocessing framework is proposed that uses an artificial neural network (ANN) to establish relationships between NWP ensemble forecast and gridded observed 7-day precipitation accumulations, and to model the increase or decrease of the probabilities for different precipitation categories relative to their climatological frequencies. Adding predictors with geographic information and location-specific normalization of forecast information permits the use of a single ANN for the entire forecast domain and thus reduces the risk of overfitting. In addition, a convolutional neural network (CNN) framework is proposed that extends the basic ANN and takes images of large-scale predictors as inputs that inform local increase or decrease of precipitation probabilities relative to climatology. Both methods are demonstrated with ECMWF ensemble reforecasts over California for lead times up to 4 weeks. They compare favorably with a state-of-the-art postprocessing technique developed for medium-range ensemble precipitation forecasts, and their forecast skill relative to climatology is positive everywhere within the domain. The magnitude of skill, however, is low for week-3 and week-4, and suggests that additional sources of predictability need to be explored.
NOAA’S SECOND-GENERATION GLOBAL MEDIUM-RANGE ENSEMBLE REFORECAST DATASET
A multidecadal ensemble reforecast database is now available that is approximately consistent with the operational 0000 UTC cycle of the 2012 NOAA Global Ensemble Forecast System (GEFS). The reforecast dataset consists of an 11-member ensemble run once each day from 0000 UTC initial conditions. Reforecasts are run to +16 days. As with the operational 2012 GEFS, the reforecast is run at T254L42 resolution (approximately 1/2° grid spacing, 42 levels) for week +1 forecasts and T190L42 (approximately 3/4° grid spacing) for the week +2 forecasts. Reforecasts were initialized with Climate Forecast System Reanalysis initial conditions, and perturbations were generated using the ensemble transform with rescaling technique. Reforecast data are available from 1985 to present. Reforecast datasets were previously demonstrated to be very valuable for detecting and correcting systematic errors in forecasts, especially forecasts of relatively rare events and longer-lead forecasts. What is novel about this reforecast dataset relative to the first-generation NOAA reforecast is that (i) a modern, currently operational version of the forecast model is used (the previous reforecast used a model version from 1998); (ii) a much larger set of output data has been saved, including variables relevant for precipitation, hydrologic, wind energy, solar energy, severe weather, and tropical cyclone forecasting; and (iii) the archived data are at much higher resolution. The article describes more about the reforecast configuration and provides a few examples of how this second-generation reforecast data may be used for research and a variety of weather forecast applications.
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF–3DVAR) system for the Weather Research and Forecasting (WRF) Model is introduced. The system is based on the existing WRF 3DVAR. Unlike WRF 3DVAR, which utilizes a simple, static covariance model to estimate the forecast-error statistics, the hybrid system combines ensemble covariances with the static covariances to estimate the complex, flow-dependent forecast-error statistics. Ensemble covariances are incorporated by using the extended control variable method during the variational minimization. The ensemble perturbations are maintained by the computationally efficient ETKF. As an initial attempt to test and understand the newly developed system, both an observing system simulation experiment under the perfect model assumption (Part I) and the real observation experiment (Part II) were conducted. In these pilot studies, the WRF was run over the North America domain at a coarse grid spacing (200 km) to emphasize synoptic scales, owing to limited computational resources and the large number of experiments conducted. In Part I, simulated radiosonde wind and temperature observations were assimilated. The results demonstrated that the hybrid data assimilation method provided more accurate analyses than the 3DVAR. The horizontal distributions of the errors demonstrated the hybrid analyses had larger improvements over data-sparse regions than over data-dense regions. It was also found that the ETKF ensemble spread in general agreed with the root-mean-square background forecast error for both the first- and second-order measures. Given the coarse resolution, relatively sparse observation network, and perfect model assumption adopted in this part of the study, caution is warranted when extrapolating the results to operational applications.
A Multiscale Analysis of the Extreme Weather Events over Western Russia and Northern Pakistan during July 2010
This manuscript presents a detailed multiscale analysis—using observations, model analyses, and ensemble forecasts—of the extreme heat wave over Russia and historic floods over Pakistan during late July 2010, with an emphasis on the floods over northern Pakistan. The results show that recirculation of air and dynamically driven subsidence occurring with the intensification of the blocking anticyclone in late July 2010 were key factors for producing the exceptionally warm temperatures over western Russia. Downstream energy dispersion from the blocking region led to trough deepening northwest of Pakistan and ridge building over the Tibetan Plateau, thereby providing the linkage between the Russian heat wave and Pakistan flood events on the large scale, in agreement with previous studies. The extratropical downstream energy dispersion and enhanced convective outflow on the large scale associated with the active phase of the Madden–Julian oscillation facilitated the formation of an intense upper-level jet northwest of Pakistan. During this same period an intense southeasterly, low-level, barrier jet–like feature formed over northern Pakistan in conjunction with a westward-moving monsoon depression. This low-level jet and deep easterly flow on the equatorward flank of an anomalous anticyclone over the Tibetan Plateau further enhanced the transport of deep tropical moisture into Pakistan and produced a sustained upslope flow and an extended period of active convection, thereby providing an important contribution leading to the exceptional rainfall amounts. The deep easterly flow and intense low-level jet were features that were absent during previous convective episodes over northern Pakistan in 2010, and hence, were likely key factors in the increased severity of the late July event.
THE THORPEX INTERACTIVE GRAND GLOBAL ENSEMBLE
Ensemble forecasting is increasingly accepted as a powerful tool to improve early warnings for high-impact weather. Recently, ensembles combining forecasts from different systems have attracted a considerable level of interest. The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Globa l Ensemble (TIGGE) project, a prominent contribution to THORPEX, has been initiated to enable advanced research and demonstration of the multimodel ensemble concept and to pave the way toward operational implementation of such a system at the international level. The objectives of TIGGE are 1) to facilitate closer cooperation between the academic and operational meteorological communities by expanding the availability of operational products for research, and 2) to facilitate exploring the concept and benefits of multimodel probabilistic weather forecasts, with a particular focus on high-impact weather prediction. Ten operational weather forecasting centers producing daily global ensemble forecasts to 1–2 weeks ahead have agreed to deliver in near–real time a selection of forecast data to the TIGGE data archives at the China Meteorological Agency, the European Centre for Medium-Range Weather Forecasts, and the National Center for Atmospheric Research. The volume of data accumulated daily is 245 GB (1.6 million global fields). This is offered to the scientific community as a new resource for research and education. The TIGGE data policy is to make each forecast accessible via the Internet 48 h after it was initially issued by each originating center. Quicker access can also be granted for field experiments or projects of particular interest to the World Weather Research Programme and THORPEX. A few examples of initial results based on TIGGE data are discussed in this paper, and the case is made for additional research in several directions.
Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions
A parametric statistical postprocessing method is presented that transforms raw (and frequently biased) ensemble forecasts from the Global Ensemble Forecast System (GEFS) into reliable predictive probability distributions for precipitation accumulations. Exploratory analysis based on 12 years of reforecast data and ⅛° climatology-calibrated precipitation analyses shows that censored, shifted gamma distributions can well approximate the conditional distribution of observed precipitation accumulations given the ensemble forecasts. A nonhomogeneous regression model is set up to link the parameters of this distribution to ensemble statistics that summarize the mean and spread of predicted precipitation amounts within a certain neighborhood of the location of interest, and in addition the predicted mean of precipitable water. The proposed method is demonstrated with precipitation reforecasts over the conterminous United States using common metrics such as Brier skill scores and reliability diagrams. It yields probabilistic forecasts that are reliable, highly skillful, and sharper than the previously demonstrated analog procedure. In situations with limited predictability, increasing the size of the neighborhood within which ensemble forecasts are considered as predictors can further improve forecast skill. It is found, however, that even a parametric postprocessing approach crucially relies on the availability of a sufficiently large training dataset.