Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Hammer, Mathias"
Sort by:
Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model
2021
Rigorous record-keeping and quality control are required to ensure the quality, reproducibility and value of imaging data. The 4DN Initiative and BINA here propose light Microscopy Metadata Specifications that extend the OME Data Model, scale with experimental intent and complexity, and make it possible for scientists to create comprehensive records of imaging experiments.
Journal Article
Community-developed checklists for publishing images and image analyses
by
Chiritescu, Catalin
,
Schroth-Diez, Britta
,
Parslow, Adam C.
in
631/1647/328
,
706/648/479
,
Annotations
2024
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
Community-developed checklists offer best-practice guidance for biologists preparing light microscopy images and describing image analyses for publications.
Journal Article
Reversible 4Fe-3S cluster morphing in an O2-tolerant NiFe hydrogenase
2014
Certain oxygen-tolerant hydrogenases contain a unique [4Fe-3S] cluster near the catalytic site, but the role of this cofactor is not fully understood. Crystallographic, spectroscopic and computational data now provide evidence for redox-dependent transformations of this cluster, potentially explaining how specialized hydrogenases can safely reduce inhibitory O
2
.
Hydrogenases catalyze the reversible oxidation of H
2
into protons and electrons and are usually readily inactivated by O
2
. However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from
Ralstonia eutropha,
has evolved remarkable tolerance toward O
2
that enables their host organisms to utilize H
2
as an energy source at high O
2
. This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H
2
oxidation at high O
2
. We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.
Journal Article
Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications
by
Öztürk, Serkan Utku
,
Faklaris Orestis
,
Kirli Koray
in
Computer programs
,
Metadata
,
Microscopy
2021
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.Micro-Meta App is an intuitive, highly interoperable, open-source software tool designed to facilitate the extraction and collection of relevant microscopy metadata as specified by recent community guidelines.
Journal Article
Reversible 4Fe-3S cluster morphing in an O(2)-tolerant NiFe hydrogenase
2014
Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.
Journal Article
Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model
by
Gaudreault, Nathalie
,
North, Alison J
,
Hammer, Mathias
in
Bioinformatics
,
Information processing
,
Light microscopy
2021
While the power of modern microscopy techniques is undeniable, rigorous record-keeping and quality control are required to ensure that imaging data may be properly interpreted (quality), reproduced (reproducibility), and used to extract reliable information and scientific knowledge which can be shared for further analysis (value). In the absence of agreed guidelines, it is inherently difficult for scientists to create comprehensive records of imaging experiments and ensure the quality of resulting image data or for manufacturers to incorporate standardized reporting and performance metrics. To solve this problem, the 4D Nucleome (4DN) Initiative and BioImaging North America (BINA) here propose light Microscopy Metadata specifications that scale with experimental intent and with the complexity of the instrumentation and analytical requirements. They consist of a set of three extensions of the Open Microscopy Environment (OME) Data Model, and because of their tiered nature they clearly specify which provenance and quality control metadata should be recorded for a given experiment. This endeavor is closely aligned with the undertakings of the recently established QUAlity Assessment and REProducibility in Light Microscopy (QUAREP-LiMi; quarep.org) global community initiative. As a result, the ensuing flexible 4DN-BINA-OME (NBO) framework represents a turning point towards increasing data fidelity, improving repeatability and reproducibility, easing future analysis, and facilitating the verifiable comparison of different datasets, experimental setups, and assays. The intention of this proposal is to encourage participation, critiques, and contributions from all imaging community stakeholders, including research and imaging scientists, facility personnel, instrument manufacturers, software developers, standards organizations, scientific publishers, and funders. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://zenodo.org/record/4710731 * https://zenodo.org/record/4711229 * https://zenodo.org/record/4711426