Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
394
result(s) for
"Hammock, Bruce D"
Sort by:
Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal model
by
Zhang, Juan
,
Zhou, Jun-Jun
,
Huo, Xiao-Kui
in
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology
,
Acids
,
Animal diseases
2022
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and is characterized by loss of dopaminergic neurons in the substantia nigra (SN), causing bradykinesia and rest tremors. Although the molecular mechanism of PD is still not fully understood, neuroinflammation has a key role in the damage of dopaminergic neurons. Herein, we found that kurarinone, a unique natural product from Sophora flavescens, alleviated the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–induced behavioral deficits and dopaminergic neurotoxicity, including the losses of neurotransmitters and tyrosine hydroxylase (TH)–positive cells (SN and striatum [STR]). Furthermore, kurarinone attenuated the MPTP-mediated neuroinflammation via suppressing the activation of microglia involved in the nuclear factor kappa B signaling pathway. The proteomics result of the solvent-induced protein precipitation and thermal proteome profiling suggest that the soluble epoxide hydrolase (sEH) enzyme, which is associated with the neuroinflammation of PD, is a promising target of kurarinone. This is supported by the increase of plasma epoxyeicosatrienoic acids (sEH substrates) and the decrease of dihydroxyeicosatrienoic acids (sEH products), and the results of in vitro inhibition kinetics, surface plasmon resonance, and cocrystallization of kurarinone with sEH revealed that this natural compound is an uncompetitive inhibitor. In addition, sEH knockout (KO) attenuated the progression of PD, and sEH KO plus kurarinone did not further reduce the protection of PD in MPTP-induced PD mice. These findings suggest that kurarinone could be a potential natural candidate for the treatment of PD, possibly through sEH inhibition.
Journal Article
Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase
2020
Epidemiological studies suggest that exposure to herbicides during pregnancy might increase risk for autism spectrum disorder (ASD) in offspring. However, the precise mechanisms underlying the risk of ASD by herbicides such as glyphosate remain unclear. Soluble epoxide hydrolase (sEH) in the metabolism of polyunsaturated fatty acids is shown to play a key role in the development of ASD in offspring after maternal immune activation. Here, we found ASD-like behavioral abnormalities in juvenile offspring after maternal exposure to high levels of formulated glyphosate. Furthermore, we found higher levels of sEH in the prefrontal cortex (PFC), hippocampus, and striatum of juvenile offspring, and oxylipin analysis showed decreased levels of epoxy-fatty acids such as 8 (9)-EpETrE in the blood, PFC, hippocampus, and striatum of juvenile offspring after maternal glyphosate exposure, supporting increased activity of sEH in the offspring. Moreover, we found abnormal composition of gut microbiota and short-chain fatty acids in fecal samples of juvenile offspring after maternal glyphosate exposure. Interestingly, oral administration of TPPU (an sEH inhibitor) to pregnant mothers from E5 to P21 prevented ASD-like behaviors such as social interaction deficits and increased grooming time in the juvenile offspring after maternal glyphosate exposure. These findings suggest that maternal exposure to high levels of glyphosate causes ASD-like behavioral abnormalities and abnormal composition of gut microbiota in juvenile offspring, and that increased activity of sEH might play a role in ASD-like behaviors in offspring after maternal glyphosate exposure. Therefore, sEH may represent a target for ASD in offspring after maternal stress from occupational exposure to contaminants.
Journal Article
A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure
by
Hammock, Bruce D.
,
Bever, Candace Spier
,
Polizzi, Karen M.
in
13/31
,
631/553/2691
,
631/553/552
2019
There is a growing need for low-cost, portable technologies for the detection of threats to the environment and human health. Here we propose a label-free, optical whole-cell
Escherichia coli
biosensor for the detection of 3-phenoxybenzoic acid (3-PBA), a biomarker for monitoring human exposure to synthetic pyrethroid insecticides. The biosensor functions like a competitive ELISA but uses whole-cells surface displaying an anti-3-PBA VHH as the detection element. When the engineered cells are mixed with 3-PBA-protein conjugate crosslinking that can be visually detected occurs. Free 3-PBA in samples competes with these crosslinks, leading to a detectable change in the output. The assay performance was improved by coloring the cells via expression of the purple-blue amilCP chromoprotein and the VHH expression level was reduced to obtain a limit of detection of 3 ng/mL. The optimized biosensor exhibited robust function in complex sample backgrounds such as synthetic urine and plasma. Furthermore, lyophilization enabled storage of biosensor cells for at least 90 days without loss of functionality. Our whole-cell biosensor is simple and low-cost and therefore has potential to be further developed as a screening tool for monitoring exposure to pyrethroids in low-resource environments.
Journal Article
Inhibition of Soluble Epoxide Hydrolase Attenuates High-Fat-Diet–Induced Hepatic Steatosis by Reduced Systemic Inflammatory Status in Mice
2012
Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH) is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF)-diet-induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term) or 16 weeks (long-term) and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet-increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet-induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet-induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet-induced hepatic steatosis in inhibiting systemic inflammation.
Journal Article
commonly used antimicrobial additive triclosan is a liver tumor promoter
by
Chen, Shujuan
,
Tukey, Robert H.
,
Karin, Michael
in
additives
,
Alanine Transaminase - blood
,
Alanine Transaminase - metabolism
2014
Significance Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a broad-spectrum antimicrobial agent that has become one of the most common additives used in consumer products. As a result, TCS has significantly affected the environment and has been frequently detected in human body fluids. Through a long-term feeding study, we found that TCS enhances hepatocyte proliferation, fibrogenesis, and oxidative stress, which, we believe, can be the driving force for developing advanced liver disease in mice. Indeed, TCS strongly enhances hepatocarcinogenesis after diethylnitrosamine initiation, accelerating hepatocellular carcinoma (HCC) development. Although animal studies require higher chemical concentrations than predicted for human exposure, this study demonstrates that TCS acts as a HCC tumor promoter and that the mechanism of TCS-induced mouse liver pathology may be relevant to humans.
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a synthetic, broad-spectrum antibacterial chemical used in a wide range of consumer products including soaps, cosmetics, therapeutics, and plastics. The general population is exposed to TCS because of its prevalence in a variety of daily care products as well as through waterborne contamination. TCS is linked to a multitude of health and environmental effects, ranging from endocrine disruption and impaired muscle contraction to effects on aquatic ecosystems. We discovered that TCS was capable of stimulating liver cell proliferation and fibrotic responses, accompanied by signs of oxidative stress. Through a reporter screening assay with an array of nuclear xenobiotic receptors (XenoRs), we found that TCS activates the nuclear receptor constitutive androstane receptor (CAR) and, contrary to previous reports, has no significant effect on mouse peroxisome proliferation activating receptor α (PPARα). Using the procarcinogen diethylnitrosamine (DEN) to initiate tumorigenesis in mice, we discovered that TCS substantially accelerates hepatocellular carcinoma (HCC) development, acting as a liver tumor promoter. TCS-treated mice exhibited a large increase in tumor multiplicity, size, and incidence compared with control mice. TCS-mediated liver regeneration and fibrosis preceded HCC development and may constitute the primary tumor-promoting mechanism through which TCS acts. These findings strongly suggest there are adverse health effects in mice with long-term TCS exposure, especially on enhancing liver fibrogenesis and tumorigenesis, and the relevance of TCS liver toxicity to humans should be evaluated.
Journal Article
sEH-derived metabolites of linoleic acid drive pathologic inflammation while impairing key innate immune cell function in burn injury
2022
Fatty acid composition in the Western diet has shifted from saturated to polyunsaturated fatty acids (PUFAs), and specifically to linoleic acid (LA, 18:2), which has gradually increased in the diet over the past 50 y to become the most abundant dietary fatty acid in human adipose tissue. PUFA-derived oxylipins regulate a variety of biological functions. The cytochrome P450 (CYP450)–formed epoxy fatty acid metabolites of LA (EpOMEs) are hydrolyzed by the soluble epoxide hydrolase enzyme (sEH) to dihydroxyoctadecenoic acids (DiHOMEs). DiHOMEs are considered cardioprotective at low concentrations but at higher levels have been implicated as vascular permeability and cytotoxic agents and are associated with acute respiratory distress syndrome in severe COVID-19 patients. High EpOME levels have also correlated with sepsis-related fatalities; however, those studies failed to monitor DiHOME levels. Considering the overlap of burn pathophysiology with these pathologies, the role of DiHOMEs in the immune response to burn injury was investigated. 12,13-DiHOME was found to facilitate the maturation and activation of stimulated neutrophils, while impeding monocyte and macrophage functionality and cytokine generation. In addition, DiHOME serum concentrations were significantly elevated in burn-injured mice and these increases were ablated by administration of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a sEH inhibitor. TPPU also reduced necrosis of innate and adaptive immune cells in burned mice, in a dose-dependent manner. The findings suggest DiHOMEs are a key driver of immune cell dysfunction in severe burn injury through hyperinflammatory neutrophilic and impaired monocytic actions, and inhibition of sEH might be a promising therapeutic strategy to mitigate deleterious outcomes in burn patients.
Journal Article
Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson’s disease
by
Saiki, Shinji
,
Yang, Jun
,
Hwang, Sung Hee
in
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology
,
alpha-Synuclein - metabolism
,
Animals
2018
Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder, and the deposition of specific protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of PD patients. Although there are several available medications to treat PD symptoms, these medications do not prevent the progression of the disease. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with the pathogenesis of PD. Here we found that MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced neurotoxicity in the mouse striatum was attenuated by subsequent repeated administration of TPPU, a potent sEH inhibitor. Furthermore, deletion of the sEH gene protected against MPTP-induced neurotoxicity, while overexpression of sEH in the striatum significantly enhanced MPTP-induced neurotoxicity. Moreover, the expression of the sEH protein in the striatum from MPTP-treated mice or postmortem brain samples from patients with dementia of Lewy bodies (DLB) was significantly higher compared with control groups. Interestingly, there was a positive correlation between sEH expression and phosphorylation of α-synuclein in the striatum. Oxylipin analysis showed decreased levels of 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid in the striatum of MPTP-treated mice, suggesting increased activity of sEH in this region. Interestingly, the expression of sEH mRNA in human PARK2 iPSC-derived neurons was higher than that of healthy control. Treatment with TPPU protected against apoptosis in human PARK2 iPSC-derived dopaminergic neurons. These findings suggest that increased activity of sEH in the striatum plays a key role in the pathogenesis of neurodegenerative disorders such as PD and DLB. Therefore, sEH may represent a promising therapeutic target for α-synuclein–related neurodegenerative disorders.
Journal Article
Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor
by
Sukhatme, Vikas P.
,
Bielenberg, Diane R.
,
Yang, Jun
in
Animal models
,
Ascites
,
Biological Sciences
2019
Although chemotherapy is a conventional cancer treatment, it may induce a protumorigenic microenvironment by triggering the release of proinflammatory mediators. In this study, we demonstrate that ovarian tumor cell debris generated by first-line platinum- and taxane-based chemotherapy accelerates tumor progression by stimulating a macrophage-derived “surge” of proinflammatory cytokines and bioactive lipids. Thus, targeting a single inflammatory mediator or pathway is unlikely to prevent therapy-induced tumor progression. Here, we show that combined pharmacological abrogation of the cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) pathways prevented the debris-induced surge of both cytokines and lipid mediators by macrophages. In animal models, the dual COX-2/sEH inhibitor PTUPB delayed the onset of debris-stimulated ovarian tumor growth and ascites leading to sustained survival over 120 days postinjection. Therefore, dual inhibition of COX-2/sEH may be an approach to suppress debris-stimulated ovarian tumor growth by preventing the therapy-induced surge of cytokines and lipid mediators.
Journal Article
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
by
Fawaz G. Haj
,
Inceoglu, Bora
,
Carlos A. Trindade da Silva
in
analgesics
,
Animals
,
Apoptosis - drug effects
2015
Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes.
Here we define the causative role of endoplasmic reticulum (ER) stress on selective modulation of pain signaling. High levels of ER stress and neuropathic pain in diabetic animals are reduced using ER stress blockers. In healthy animals, turning on the ER stress signal transduction cascade generates an immediate but lasting and site restricted painful phenotype, which is reversible by ER stress blockers. This previously unnoticed mechanism explains the broad lack of efficacy of available analgesics and should ignite the discovery of a new generation of therapeutics that do not directly quell ion channel or neurotransmitter activity.
Journal Article
Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress
by
Yang, Chun
,
Dong, Chao
,
Yang, Jun
in
Animals
,
Antidepressants
,
Antidepressive Agents - pharmacology
2016
Depression is a severe and chronic psychiatric disease, affecting 350 million subjects worldwide. Although multiple antidepressants have been used in the treatment of depressive symptoms, their beneficial effects are limited. The soluble epoxide hydrolase (sEH) plays a key role in the inflammation that is involved in depression. Thus, we examined here the role of sEH in depression. In both inflammation and social defeat stress models of depression, a potent sEH inhibitor, TPPU, displayed rapid antidepressant effects. Expression of sEH protein in the brain from chronically stressed (susceptible) mice was higher than of control mice. Furthermore, expression of sEH protein in postmortem brain samples of patients with psychiatric diseases, including depression, bipolar disorder, and schizophrenia, was higher than controls. This finding suggests that increased sEH levels might be involved in the pathogenesis of certain psychiatric diseases. In support of this hypothesis, pretreatment with TPPU prevented the onset of depression-like behaviors after inflammation or repeated social defeat stress. Moreover, sEH KO mice did not show depression-like behavior after repeated social defeat stress, suggesting stress resilience. The sEH KO mice showed increased brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor TrkB in the prefrontal cortex, hippocampus, but not nucleus accumbens, suggesting that increased BDNF-TrkB signaling in the prefrontal cortex and hippocampus confer stress resilience. All of these findings suggest that sEH plays a key role in the pathophysiology of depression, and that epoxy fatty acids, their mimics, as well as sEH inhibitors could be potential therapeutic or prophylactic drugs for depression.
Journal Article