MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain
Journal Article

Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain

2015
Request Book From Autostore and Choose the Collection Method
Overview
Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes. Here we define the causative role of endoplasmic reticulum (ER) stress on selective modulation of pain signaling. High levels of ER stress and neuropathic pain in diabetic animals are reduced using ER stress blockers. In healthy animals, turning on the ER stress signal transduction cascade generates an immediate but lasting and site restricted painful phenotype, which is reversible by ER stress blockers. This previously unnoticed mechanism explains the broad lack of efficacy of available analgesics and should ignite the discovery of a new generation of therapeutics that do not directly quell ion channel or neurotransmitter activity.
Publisher
National Academy of Sciences,National Acad Sciences

MBRLCatalogueRelatedBooks