Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Han, Alvin X."
Sort by:
The effect of SARS-CoV-2 vaccination on post-acute sequelae of COVID-19 (PASC): A prospective cohort study
by
Verveen, Anouk
,
Leenstra, Tjalling
,
de Jong, Menno D.
in
Adult
,
adults
,
Allergy and Immunology
2022
•Vaccination did not reduce symptoms of post-acute sequelae (PASC).•Antibody kinetics did not differ between participants with and without PASC.•Early antibody titers were comparable between participants with and without PASC.•Therapeutic potential of COVID-19 vaccination on PASC seems unlikely.
Symptoms of post-acute sequelae of COVID-19 (PASC) may improve following SARS-CoV-2 vaccination. However few prospective data that also explore the underlying biological mechanism are available. We assessed the effect of vaccination on symptomatology of participants with PASC, and compared antibody dynamics between those with and without PASC.
RECoVERED is a prospective cohort study of adult patients with mild to critical COVID-19, enrolled from illness onset. Among participants with PASC, vaccinated participants were exact-matched 1:1 on age, sex, obesity status and time since illness onset to unvaccinated participants. Between matched pairs, we compared the monthly mean numbers of symptoms over a 3-month follow-up period, and, using exact logistic regression, the proportion of participants who fully recovered from PASC. Finally, we assessed the association between PACS status and rate of decay of spike- and RBD-binding IgG titers up to 9 months after illness onset using Bayesian hierarchical linear regression.
Of 349 enrolled participants, 316 (90.5%) had ≥3 months of follow-up, of whom 186 (58.9%) developed PASC. Among 36 matched pairs with PASC, the mean number of symptoms reported each month during 3 months of follow-up were comparable between vaccinated and unvaccinated groups. Odds of full recovery from PASC also did not differ between matched pairs (OR 1.57 [95%CI 0.46–5.84]) within 3 months after the matched time-point. The median half-life of spike- and RBD-binding IgG levels were, in days (95%CrI), 233 (183–324) and 181 (147–230) among participants with PASC, and 170 (125–252) and 144 (113–196) among those without PASC, respectively.
Our study found no strong evidence to suggest that vaccination improves symptoms of PASC. This was corroborated by comparable spike- and RBD-binding IgG waning trajectories between those with and without PASC, refuting any immunological basis for a therapeutic effect of vaccination on PASC.
Journal Article
Estimating the potential impact and diagnostic requirements for SARS-CoV-2 test-and-treat programs
2023
Oral antivirals have the potential to reduce the public health burden of COVID-19. However, now that we have exited the emergency-phase of the COVID-19 pandemic, declining SARS-CoV-2 clinical testing rates (average testing rates =
≪
10 tests/100,000 people/day in low-and-middle income countries; <100 tests/100,000 people/day in high-income countries; September 2023) make the development of effective test-and-treat programs challenging. We used an agent-based model to investigate how testing rates and strategies affect the use and effectiveness of oral antiviral test-to-treat programs in four country archetypes of different income levels and demographies. We find that in the post-emergency-phase of the pandemic, in countries where low testing rates are driven by limited testing capacity, significant population-level impact of test-and-treat programs can only be achieved by both increasing testing rates and prioritizing individuals with greater risk of severe disease. However, for all countries, significant reductions in severe cases with antivirals are only possible if testing rates were substantially increased with high willingness of people to seek testing. Comparing the potential population-level reductions in severe disease outcomes of test-to-treat programs and vaccination shows that test-and-treat strategies are likely substantially more resource intensive requiring very high levels of testing (≫100 tests/100,000 people/day) and antiviral use suggesting that vaccination should be a higher priority.
Antivirals are now available for treating COVID-19 but must be used early in the course of infection to be effective. Here, the authors use mathematical modelling to assess the potential public health impacts of antiviral use considering different levels of testing and country sociodemographic characteristics.
Journal Article
Competition between transmission lineages mediated by human mobility shapes seasonal influenza epidemics in the US
by
Han, Alvin X.
,
de Jong, Simon P. J.
,
Conlan, Andrew J. K.
in
631/158/1469
,
631/181/735
,
692/699/255/1578
2025
Due to its climatic variability, complex mobility networks and geographic expanse, the United States represents a compelling setting to explore the transmission processes that lead to heterogeneous yearly seasonal influenza epidemics. By analyzing genomic and epidemiological data collected in the US from 2014 to 2023, we show that epidemics consisted of multiple co-circulating transmission lineages that could emerge from all regions and often rapidly expanded. Lineage spread was characterized by strong spatiotemporal hierarchies and lineage size correlated with timing of establishment in the US. Mechanistic epidemic simulations, supported by phylogeographic analyses, suggest that competition between lineages on a network of human mobility consistent with commuting flows drove lineage dynamics. Our results suggest that the processes that disseminate viruses nationwide are highly structured, but variability in the short-term processes that determine the locations, timing, and explosiveness of initial epidemic sparks limits predictability of regional and national epidemics.
Leveraging genomic and epidemiological surveillance data, the authors show that flu epidemics in the US arise from independent outbreaks in different states that spread from state to state through commuting and compete for susceptible hosts.
Journal Article
An epidemiological surveillance of hand foot and mouth disease in paediatric patients and in community: A Singapore retrospective cohort study, 2013–2018
by
Han, Alvin X.
,
Chong, Chia Yin
,
Ong, Yasmin Hui Binn
in
Biology and Life Sciences
,
Care and treatment
,
Communicable diseases in children
2021
While hand, foot and mouth disease (HFMD) is primarily self-resolving-soaring incidence rate of symptomatic HFMD effectuates economic burden in the Asia-Pacific region. Singapore has seen a conspicuous rise in the number of HFMD cases from 2010s. Here, we aims to identify the serology and genotypes responsible for such outbreaks in hospitals and childcare facilities.
We studied symptomatic paediatric HFMD cases from 2013 to 2018 in Singapore. Surveillance for subclinical enterovirus infections was also performed in childcares at the same time period.
Genotyping 101 symptomatic HFMD samples revealed CV-A6 as the major etiological agent for recent outbreaks. We detected infections with CV-A6 (41.0%), EV-A71 (7%), CV-A16 (3.0%), coxsackievirus A2, CV-A2 (1.0%) and coxsackievirus A10, CV-A10 (1.0%). Phylogenetic analysis of local CV-A6 strains revealed a high level of heterogeneity compared against others worldwide, dissimilar to other HFMD causative enteroviruses for which the dominant strains and genotypes are highly region specific. We detected sub-clinical enterovirus infections in childcare centres; 17.1% (n = 245) tested positive for enterovirus in saliva, without HFMD indicative symptoms at the point of sample collection.
CV-A6 remained as the dominant HFMD causative strain in Singapore. Silent subclinical enteroviral infections were detected and warrant further investigations.
Journal Article
Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19
2024
After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC.
RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after COVID-19 onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects.
186/349 (53%) participants had ≥2 serum samples and were included in current analyses. Of these, 101/186 (54%: 45/101[45%] female, median age 55 years [IQR = 45-64]) reported PASC at 12 and 24 weeks after COVID-19 onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR = 40-56]). In a multivariate model, PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNFα at 24 weeks. Early (0-4 week) IL-1β and BMI at COVID-19 onset were predictive of PASC at 24 weeks.
Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among individuals with reduced pulmonary function. Early IL-1β shows promise as a predictor of PASC.
Journal Article
Cost-effectiveness of SARS-CoV-2 self-testing at routine gatherings to minimize community-level infections in lower-middle income countries: A mathematical modeling study
by
Chevalier, Joshua M.
,
Girdwood, Sarah J.
,
Lekodeba, Nkgomeleng A.
in
Analysis
,
Asymptomatic
,
Brazil - epidemiology
2024
Places of worship serve as a venue for both mass and routine gathering around the world, and therefore are associated with risk of large-scale SARS-CoV-2 transmission. However, such routine gatherings also offer an opportunity to distribute self-tests to members of the community to potentially help mitigate transmission and reduce broader community spread of SARS-CoV-2. Over the past four years, self-testing strategies have been an impactful tool for countries’ response to the COVID-19 pandemic, especially early on to mitigate the spread when vaccination and treatment options were limited. We used an agent-based mathematical model to estimate the impact of various strategies of symptomatic and asymptomatic self-testing for a fixed percentage of weekly routine gatherings at places of worship on community transmission of SARS-CoV-2 in Brazil, Georgia, and Zambia. Testing strategies assessed included weekly and bi-weekly self-testing across varying levels of vaccine effectiveness, vaccine coverage, and reproductive numbers to simulate developing stages of the COVID-19 pandemic. Self-testing symptomatic people attending routine gatherings can cost-effectively reduce the spread of SARS-CoV-2 within places of worship and the community, resulting in incremental cost-effectiveness ratios of $69-$303 USD. This trend is especially true in contexts where population level attendance at such gatherings is high, demonstrating that a distribution approach is more impactful when a greater proportion of the population is reached. Asymptomatic self-testing of attendees at 100% of places of worship in a country results in the greatest percent of infections averted and is consistently cost-effective but remains costly. Budgetary needs for asymptomatic testing are expensive and likely unaffordable for lower-middle income countries (520-1550x greater than that of symptomatic testing alone), promoting that strategies to strengthen symptomatic testing should remain a higher priority.
Journal Article
Regional connectivity drove bidirectional transmission of SARS-CoV-2 in the Middle East during travel restrictions
2022
Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan’s export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.
The dynamics of SARS-CoV-2 transmission in the Middle East have been relatively under-studied. Here, the authors integrate genomic and travel data and show that introductions to the region were initially driven by intercontinental air travel, after which regional land travel became a more important driver.
Journal Article
Determinants of epidemic size and the impacts of lulls in seasonal influenza virus circulation
by
Kootstra, Neeltje A.
,
Russell, Colin A.
,
de Jong, Menno D.
in
13/1
,
631/114/2397
,
692/699/255/1578
2024
During the COVID-19 pandemic, levels of seasonal influenza virus circulation were unprecedentedly low, leading to concerns that a lack of exposure to influenza viruses, combined with waning antibody titres, could result in larger and/or more severe post-pandemic seasonal influenza epidemics. However, in most countries the first post-pandemic influenza season was not unusually large and/or severe. Here, based on an analysis of historical influenza virus epidemic patterns from 2002 to 2019, we show that historic lulls in influenza virus circulation had relatively minor impacts on subsequent epidemic size and that epidemic size was more substantially impacted by season-specific effects unrelated to the magnitude of circulation in prior seasons. From measurements of antibody levels from serum samples collected each year from 2017 to 2021, we show that the rate of waning of antibody titres against influenza virus during the pandemic was smaller than assumed in predictive models. Taken together, these results partially explain why the re-emergence of seasonal influenza virus epidemics was less dramatic than anticipated and suggest that influenza virus epidemic dynamics are not currently amenable to multi-season prediction.
Seasonal influenza levels were unusually low when non-pharmaceutical interventions for COVID-19 were in place. Here, the authors analyse serological and epidemiological evidence for the hypothesis that such lulls in influenza transmission lead to reduced immunity and therefore larger epidemics in subsequent seasons.
Journal Article
Regional importation and asymmetric within-country spread of SARS-CoV-2 variants of concern in the Netherlands
by
Kozanli, Eva
,
Klinkenberg, Don
,
Koopsen, Jelle
in
Coronaviruses
,
COVID-19
,
Epidemiology and Global Health
2022
Background:Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely between September 2020 and August 2021. We sought to elucidate how various control measures, including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the Netherlands.Methods:We performed phylogenetic analyses on 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program.Results:We found that all four VOCs were introduced before targeted flight restrictions were imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predominantly from other European countries, continued during these restrictions. After their respective introductions into the Netherlands, the Alpha and Delta VOCs largely circulated within more populous regions of the country with international connections before asymmetric bidirectional transmissions occurred with the rest of the country and the VOC became the dominant circulating lineage.Conclusions:Our findings show that flight restrictions had limited effectiveness in deterring VOC introductions due to the strength of regional land travel importation risks. As countries consider scaling down SARS-CoV-2 surveillance efforts in the post-crisis phase of the pandemic, our results highlight that robust surveillance in regions of early spread is important for providing timely information for variant detection and outbreak control.Funding:None.
Journal Article
Epidemiologic and Genomic Analysis of SARS-CoV-2 Delta Variant Superspreading Event in Nightclub, the Netherlands, June 2021
by
van der Lubben, Mariken
,
van Ewijk, Catharina E.
,
Cornelissen, Akke
in
Antigens
,
Causes of
,
Contact tracing
2022
We report a severe acute respiratory syndrome coronavirus 2 superspreading event in the Netherlands after distancing rules were lifted in nightclubs, despite requiring a negative test or vaccination. This occurrence illustrates the potential for rapid dissemination of variants in largely unvaccinated populations under such conditions. We detected subsequent community transmission of this strain.
Journal Article