Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,048
result(s) for
"Han, Rui"
Sort by:
Kamma and the Buddhist Hell
2025
As an extension of the Problem of Evil, the Problem of Hell poses further difficulties for the theodicy and eschatology of Western theist religions. This Problem of Hell, which presumes a transcendent divine entity, is, however, less applicable to an Eastern religious tradition like Buddhism. As a non-theist religion, Buddhism is not centered on an overpowering God but is predicated on the doctrine of kamma. Hell in Buddhism is conceived as one of the rebirth realms in the saṃsāra where beings are driven to by the force of their kamma. This kamma-based conception of hell has its own unique features, especially with regard to retribution and salvation. It also has a unique problem. As the doctrine of kamma is commonly understood as an endorsement of free will, it appears to conflict with another Buddhist doctrine, namely that of dependent origination, which is often interpreted as suggesting a deterministic worldview. This tension between doctrines of kamma and dependent origination is also known as the Buddhist free will problem, as it involves the controversy over the metaphysics of free will. Based on the Pāli scriptures, the essay tries to propose a compatibilist solution to the problem, defending kamma for the Buddhist hell.
Journal Article
Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis
2023
As yet, the genetic abnormalities involved in the exacerbation of Ulcerative colitis (UC) have not been adequately explored based on bioinformatic methods.
The gene microarray data and clinical information were downloaded from Gene Expression Omnibus (GEO) repository. The scale-free gene co-expression networks were constructed by R package \"WGCNA\". Gene enrichment analysis was performed
Metascape database. Differential expression analysis was performed using \"Limma\" R package. The \"randomForest\" packages in R was used to construct the random forest model. Unsupervised clustering analysis performed by \"ConsensusClusterPlus\"R package was utilized to identify different subtypes of UC patients. Heat map was established using the R package \"pheatmap\". Diagnostic parameter capability was evaluated by ROC curve. The\"XSum\"packages in R was used to screen out small-molecule drugs for the exacerbation of UC based on cMap database. Molecular docking was performed with Schrodinger molecular docking software.
Via WGCNA, a total 77 high Mayo score-associated genes specific in UC were identified. Subsequently, the 9 gene signatures of the exacerbation of UC was screened out by random forest algorithm and Limma analysis, including BGN,CHST15,CYYR1,GPR137B,GPR4,ITGA5,LILRB1,SLFN11 and ST3GAL2. The ROC curve suggested good predictive performance of the signatures for exacerbation of UC in both the training set and the validation set. We generated a novel genotyping scheme based on the 9 signatures. The percentage of patients achieved remission after 4 weeks intravenous corticosteroids (CS-IV) treatment was higher in cluster C1 than that in cluster C2 (54%
. 27%, Chi-square test,
=0.02). Energy metabolism-associated signaling pathways were significantly up-regulated in cluster C1, including the oxidative phosphorylation, pentose and glucuronate interconversions and citrate cycle TCA cycle pathways. The cluster C2 had a significant higher level of CD4+ T cells. The\"XSum\"algorithm revealed that Exisulind has a therapeutic potential for UC. Exisulind showed a good binding affinity for GPR4, ST3GAL2 and LILRB1 protein with the docking glide scores of -7.400 kcal/mol, -7.191 kcal/mol and -6.721 kcal/mol, respectively.We also provided a comprehensive review of the environmental toxins and drug exposures that potentially impact the progression of UC.
Using WGCNA and random forest algorithm, we identified 9 gene signatures of the exacerbation of UC. A novel genotyping scheme was constructed to predict the severity of UC and screen UC patients suitable for CS-IV treatment. Subsequently, we identified a small molecule drug (Exisulind) with potential therapeutic effects for UC. Thus, our study provided new ideas and materials for the personalized clinical treatment plans for patients with UC.
Journal Article
Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro
by
Tian, Ya-dong
,
Kang, Xiang-tao
,
Li, Zi-yi
in
Abdomen
,
Abdominal fat
,
Abdominal Fat - cytology
2019
Background
The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens.
Results
AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4%
+
0.6) than IMF-derived preadipocytes
(
86.0%
+
0.4) (
p
< 0.01
)
. By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as
PPARG
,
ACSBG2
,
FABP4
,
FASN
,
APOA1
and
INSIG1
, were identified in our study.
Conclusion
This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.
Journal Article
Circulating exosomal long non‐coding RNAs in patients with acute myocardial infarction
by
Yuan, Wen
,
Liu, Xiao‐Yan
,
Zheng, Mei‐Li
in
acute myocardial infarction
,
Biomarkers
,
Blood pressure
2020
Exosomes are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized in acute myocardial infarction (AMI). However, the regulatory role of exosomal long non‐coding RNAs (lncRNAs) in AMI remains largely unclear. Exosomes were isolated from the plasma of AMI patients and controls, and the sequencing profiles and twice qRT‐PCR validations of exosomal lncRNAs were performed. A total of 518 differentially expressed lncRNAs were detected over two‐fold change, and 6 kinds of lncRNAs were strikingly elevated in AMI patients with top fold change and were selected to perform subsequent validation. In the two validations, lncRNAs ENST00000556899.1 and ENST00000575985.1 were significantly up‐regulated in AMI patients compared with controls. ROC curve analysis revealed that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 yielded the area under the curve values of 0.661 and 0.751 for AMI, respectively. Moreover, ENST00000575985.1 showed more significant relationship with clinical parameters, including inflammatory biomarkers, prognostic indicators and myocardial damage markers. Multivariate logistic model exhibited positive association of ENST00000575985.1 with the risk of heart failure in AMI patients. In summary, our data demonstrated that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 are elevated in patients with AMI, functioning as potential biomarkers for predicting the prognosis of pateints with AMI.
Journal Article
Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome
2025
Background
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by multiple clinical features, including anovulation, hyperandrogenism, and polycystic ovarian morphology, leading to infertility. Formononetin (FMN), which is a major bioactive isoflavone compound in
Astragalus membranaceus
, exerts anti-inflammatory effects. However, whether FMN is effective in the treatment of PCOS remains unknown. This study aims to explore the effects and the possible mechanisms of FMN in PCOS.
Methods
Dehydroepiandrosterone (DHEA)-induced PCOS rats and dihydrotestosterone (DHT)-induced PCOS cell models were established. Fifty rats were randomly assigned into five groups of 10 rats each: Control, PCOS, PCOS + FMN (15 mg/kg), PCOS + FMN (30 mg/kg), and PCOS + FMN (60 mg/kg). Fasting blood glucose, insulin, luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol were detected in DHEA-induced PCOS rats. Ovarian histological changes and apoptosis were evaluated utilizing H&E and TUNEL staining. Subsequently, the effects of FMN on oxidative stress and inflammatory responses in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model were explored. Besides, the function of FMN on cell viability and apoptosis in DHT-induced PCOS cell model were explored by using CCK-8 assay and flow cytometry. Protein expression was detected via western blot and immunofluorescence staining in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model.
Results
FMN alleviated PCOS symptoms and reduced inflammation, cell apoptosis, and oxidative stress in DHEA-induced PCOS rats and DHT-induced KGN cells. Additionally, FMN suppressed NLRP3 inflammasome activation in both models. In the DHT-induced PCOS cell model, nigericin (a activator of NLRP3) reversed the functions of FMN on inflammation, apoptosis, and oxidative stress.
Conclusion
These findings demonstrated that FMN could alleviate PCOS by repressing inflammation, apoptosis, as well as oxidative stress in vivo and in vitro via inhibition of the NLRP3 inflammasome.
Highlights
FMN improved PCOS symptoms.
FMN alleviated cell apoptosis, inflammation and oxidative stress in PCOS.
FMN inhibited the activation of NLRP3 inflammasome in PCOS.
Journal Article
NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury
2018
Spinal cord injury (SCI) often leads to permanent loss of motor, sensory, and autonomic functions.We have previously shown that neurotrophin3 (NT3)-loaded chitosan biodegradable material allowed for prolonged slow release of NT3 for 14 weeks under physiological conditions. Here we report that NT3-loaded chitosan, when inserted into a 1-cm gap of hemisectioned and excised adult rhesus monkey thoracic spinal cord, elicited robust axonal regeneration. Labeling of cortical motor neurons indicated motor axons in the corticospinal tract not only entered the injury site within the biomaterial but also grew across the 1-cm-long lesion area and into the distal spinal cord. Through a combination of magnetic resonance diffusion tensor imaging, functional MRI, electrophysiology, and kinematics-based quantitative walking behavioral analyses, we demonstrated that NT3-chitosan enabled robust neural regeneration accompanied by motor and sensory functional recovery. Given that monkeys and humans share similar genetics and physiology, our method is likely translatable to human SCI repair.
Journal Article
Atomically defined angstrom-scale all-carbon junctions
2019
Full-carbon electronics at the scale of several angstroms is an expeimental challenge, which could be overcome by exploiting the versatility of carbon allotropes. Here, we investigate charge transport through graphene/single-fullerene/graphene hybrid junctions using a single-molecule manipulation technique. Such sub-nanoscale electronic junctions can be tuned by band gap engineering as exemplified by various pristine fullerenes such as C
60
, C
70
, C
76
and C
90
. In addition, we demonstrate further control of charge transport by breaking the conjugation of their π systems which lowers their conductance, and via heteroatom doping of fullerene, which introduces transport resonances and increase their conductance. Supported by our combined density functional theory (DFT) calculations, a promising future of tunable full-carbon electronics based on numerous sub-nanoscale fullerenes in the large family of carbon allotropes is anticipated.
All-carbon electronics holds promise beyond the conventional silicon-based electronics, but it remains challenging to manufacture them with well-defined structures thus tunability. Tan et al. control charge transport in single-molecule junctions using different fullerenes between graphene electrodes.
Journal Article
Integrated Analysis of MiRNA and Genes Associated with Meat Quality Reveals that Gga-MiR-140-5p Affects Intramuscular Fat Deposition in Chickens
by
Sun, Gui-Rong
,
Liu, Xiao-Jun
,
Kang, Xiang-Tao
in
Adipocyte differentiation
,
Adipocytes
,
Adipogenesis
2018
Background/Aims: Poultry meat quality is affected by many factors, among which intramuscular fat (IMF) is predominant. IMF content affects the tenderness, juiciness, and favor of chicken. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) during the adipogenic process. However, little is known about miRNAs associated with poultry IMF deposition, especially intramuscular adipocyte differentiation. Methods: The IMF content of two physiological stages was measured, and miRNA-Seq and RNA-Seq data were integrated and analyzed. A chicken intramuscular adipocyte cell differentiation model was constructed. A luciferase reporter assay, miRNA overexpression, and Oil Red O staining were used to confirm the targets of gga-miR-140-5p. Results: Our results showed that late-laying-period hens, which had a higher IMF content, exhibited lower global expression levels of miRNAs than juvenile hens. A total of 104 differentially expressed (DE) miRNAs were identified between the two groups. Integrated analysis of differentially expressed genes and DE miRNAs identified a total of 378 miRNA-mRNA pairs. Functional enrichment analysis revealed that these intersecting genes are involved in ubiquitin-mediated proteolysis, the peroxisome proliferator-activated receptor signaling pathway, glycerophospholipid metabolism, and fatty acid elongation and degradation pathways. Furthermore, we demonstrated that gga-miR-140-5p promoted intramuscular adipocyte differentiation via targeting retinoid X receptor gamma. Conclusion: Our findings may contribute to a more thorough understanding of chicken IMF deposition and the improvement of poultry meat quality.
Journal Article
Brain response in asthma: the role of “lung-brain” axis mediated by neuroimmune crosstalk
2023
In addition to typical respiratory symptoms, patients with asthma are frequently accompanied by cognitive decline, mood disorders (anxiety and depression), sleep disorders, olfactory disorders, and other brain response manifestations, all of which worsen asthma symptoms, form a vicious cycle, and exacerbate the burden on families and society. Therefore, studying the mechanism of neurological symptoms in patients with asthma is necessary to identify the appropriate preventative and therapeutic measures. In order to provide a comprehensive reference for related research, we compiled the pertinent literature, systematically summarized the latest research progress of asthma and its brain response, and attempted to reveal the possible “lung–brain” crosstalk mechanism and treatment methods at the onset of asthma, which will promote more related research to provide asthmatic patients with neurological symptoms new hope.
Journal Article
Flexible decapyrrylcorannulene hosts
2019
The assembly of spherical fullerenes, or buckyballs, into single crystals for crystallographic identification often suffers from disordered arrangement. Here we show a chiral configuration of decapyrrylcorannulene that has a concave ‘palm’ of corannulene and ten flexible electron-rich pyrryl group ‘fingers’ to mimic the smart molecular ‘hands’ for self-adaptably cradling various buckyballs in a (+)hand-ball-hand(−) mode. As exemplified by crystallographic identification of 15 buckyball structures representing pristine, exohedral, endohedral, dimeric and hetero-derivatization, the pyrryl groups twist with varying dihedral angles to adjust the interaction between decapyrrylcorannulene and fullerene. The self-adaptable electron-rich pyrryl groups, susceptible to methylation, are theoretically revealed to contribute more than the bowl-shaped palm of the corannulene in holding buckyball structures. The generality of the present decapyrrylcorannulene host with flexible pyrryl groups facilitates the visualization of numerous unknown/unsolved fullerenes by crystallography and the assembly of the otherwise close-packed spherical fullerenes into two-dimensional layered structures by intercalation.
The structures of fullerenes, or buckyballs, are often very difficult to resolve. Here, the authors describe a decapyrrylcorannulene host with ten flexible pyrryl groups that can efficiently co-crystallize with diverse fullerene derivatives in a ‘hand-ball-hand’ fashion, allowing crystallographic identification of commonly known types of fullerenes.
Journal Article