Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
561
result(s) for
"Hana Lee"
Sort by:
One spoon on this earth
by
Hyŏn, Ki-yŏng, 1941- author
,
Lee, Jennifer M. (Jennifer Myunghee), translator
,
Hyŏn, Ki-yŏng, 1941-. Chisang e sutkarak hana
in
Autobiographical memory Fiction
,
Cheju Island (Korea) Fiction
,
Korea Fiction
2013
\"An autobiographical novel that takes a life to pieces, putting forward not a coherent, straightforward narrative, but a series of dazzling images ranging from the ordinary to the unbelievable, fished from the depths of the author's memory as well as from the stream of his day-to-day life as an adult author. Interweaving flashes of the horrific Jeju Uprising and the Korean War with pleasant family anecdotes, stories of schoolroom cruelty, and bizarre digressions into his personal mythology, One Spoon on this Earth stands a sort of digest of contemporary Korean history as it might be seen through the lens of one man's life and opinions\"-- Provided by publisher.
Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation
2020
Osteoarthritis (OA), primarily characterized by articular cartilage destruction, is the most common form of age-related degenerative whole-joint disease. No disease-modifying treatments for OA are currently available. Although OA is primarily characterized by cartilage destruction, our understanding of the processes controlling OA progression is poor. Here, we report the association of OA with increased levels of osteoclast-associated receptor (OSCAR), an immunoglobulin-like collagen-recognition receptor. In mice, OSCAR deletion abrogates OA manifestations, such as articular cartilage destruction, subchondral bone sclerosis, and hyaline cartilage loss. These effects are a result of decreased chondrocyte apoptosis, which is caused by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in induced OA. Treatments with human OSCAR-Fc fusion protein attenuates OA pathogenesis caused by experimental OA. Thus, this work highlights the function of OSCAR as a catabolic regulator of OA pathogenesis, indicating that OSCAR blockade is a potential therapy for OA.
Osteoarthritis (OA) is associated with cartilage disruption, but the underlying mechanisms remain unclear. Here, the authors show that expression of osteoclast-associated receptor (OSCAR) is associated with OA, that its genetic ablation or targeting with OSCAR-Fc fusion protein ameliorates OA in mice by decreasing chondrocyte apoptosis.
Journal Article
An Enhanced Method to Estimate Heart Rate from Seismocardiography via Ensemble Averaging of Body Movements at Six Degrees of Freedom
by
Whang, Mincheol
,
Lee, Hyunwoo
,
Lee, Hana
in
accelerometer
,
Electrocardiography
,
ensemble averaging
2018
Continuous cardiac monitoring has been developed to evaluate cardiac activity outside of clinical environments due to the advancement of novel instruments. Seismocardiography (SCG) is one of the vital components that could develop such a monitoring system. Although SCG has been presented with a lower accuracy, this novel cardiac indicator has been steadily proposed over traditional methods such as electrocardiography (ECG). Thus, it is necessary to develop an enhanced method by combining the significant cardiac indicators. In this study, the six-axis signals of accelerometer and gyroscope were measured and integrated by the L2 normalization and multi-dimensional kineticardiography (MKCG) approaches, respectively. The waveforms of accelerometer and gyroscope were standardized and combined via ensemble averaging, and the heart rate was calculated from the dominant frequency. Thirty participants (15 females) were asked to stand or sit in relaxed and aroused conditions. Their SCG was measured during the task. As a result, proposed method showed higher accuracy than traditional SCG methods in all measurement conditions. The three main contributions are as follows: (1) the ensemble averaging enhanced heart rate estimation with the benefits of the six-axis signals; (2) the proposed method was compared with the previous SCG method that employs fewer-axis; and (3) the method was tested in various measurement conditions for a more practical application.
Journal Article
Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model
2021
Recently, a variety of safe and effective non-pharmacological methods have been introduced as new treatments of alopecia. Micro-current electrical stimulation (MCS) is one of them. It is generally known to facilitate cell proliferation and differentiation and promote cell migration and ATP synthesis. This study aimed to investigate the hair growth-promoting effect of MCS on human hair follicle-derived papilla cells (HFDPC) and a telogenic mice model. We examined changes in cell proliferation, migration, and cell cycle progression with MCS-applied HFDPC. The changes of expression of the cell cycle regulatory proteins, molecules related to the PI3K/AKT/mTOR/Fox01 pathway and Wnt/β-catenin pathway were also examined by immunoblotting. Subsequently, we evaluated the various growth factors in developing hair follicles by RT-PCR in MCS-applied (MCS) mice model. From the results, the MCS-applied groups with specific levels showed effects on HFDPC proliferation and migration and promoted cell cycle progression and the expression of cell cycle-related proteins. Moreover, these levels significantly activated the Wnt/β-catenin pathway and PI3K/AKT/mTOR/Fox01 pathway. Various growth factors in developing hair follicles, including Wnts, FGFs, IGF-1, and VEGF-B except for VEGF-A, significantly increased in MCS-applied mice. Our results may confirm that MCS has hair growth-promoting effect on HFDPC as well as telogenic mice model, suggesting a potential treatment strategy for alopecia.
Journal Article
Comparison of the Antihypertensive Activity of Phenolic Acids
2022
Phenolic acids, found in cereals, legumes, vegetables, and fruits, have various biological functions. We aimed to compare the antihypertensive potential of different phenolic acids by evaluating their ACE inhibitory activity and cytoprotective capacity in EA.hy 926 endothelial cells. In addition, we explored the mechanism underlying the antihypertensive activity of sinapic acid. Of all the phenolic acids studied, sinapic acid, caffeic acid, coumaric acid, and ferulic acid significantly inhibited ACE activity. Moreover, gallic acid, sinapic acid, and ferulic acid significantly enhanced intracellular NO production. Based on the results of GSH depletion, ROS production, and MDA level analyses, sinapic acid was selected to study the mechanism underlying the antihypertensive effect. Sinapic acid decreases endothelial dysfunction by enhancing the expression of antioxidant-related proteins. Sinapic acid increased phosphorylation of eNOS and Akt in a dose-dependent manner. These findings indicate the potential of sinapic acid as a treatment for hypertension.
Journal Article
Pim1 promotes the maintenance of bone homeostasis by regulating osteoclast function
2025
The Pim1 (proviral integration site for Moloney leukemia virus 1) protein is a serine/threonine kinase that is essential for cell proliferation, apoptosis and innate immune responses. Here we show that Pim1 promotes osteoclast resorptive function without affecting osteoclast numbers. Specifically, we found that mice lacking Pim1 (
Pim1
−/−
) developed increased trabecular bone mass and indices such as trabecular bone-mass density. This was due to the direct phosphorylation of TRAF6 by Pim1 in mature osteoclasts, which activated the Akt–GSK3β signaling pathway. This, in turn, promoted the acetylation and consequent stabilization of microtubules, which permitted the formation of the osteoclast sealing zone. In vivo experiments then showed that, when mice with lipopolysaccharide-induced bone loss or tumor-induced osteolysis were treated with SGI-1776, a Pim1 inhibitor that is more selective for Pim1, the bone loss was significantly ameliorated. Thus, Pim1 plays an important role in osteoclast function and may be a therapeutic target for bone-related diseases.
Pim1 protein enhances osteoclast function and bone health
This study explores how a protein called Pim1 affects bone health. Bones constantly renew themselves through a process involving cells called osteoclasts, which break down old bone, and osteoblasts, which build new bone. When this balance is disrupted, it can lead to diseases such as osteoporosis. Researchers found that Pim1, a type of enzyme, plays a role in this process by affecting the stability of structures within osteoclasts called microtubules. The study used mice that lacked Pim1 and found they had stronger bones due to reduced bone breakdown. This was linked to changes in microtubule stability, influenced by Pim1 through a pathway involving other proteins, including Akt and TRAF6. The researchers also tested a drug called SGI-1776, which inhibits Pim1, and found that it could protect against bone loss in conditions such as inflammation and cancer.
This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Journal Article
5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis
2024
Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8–11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.
There is a strong need for the development of effective and safe disease-modifying osteoarthritis drugs. Here, the authors show that 5-ASA, an anti-inflammatory drug used for ulcerative colitis, shows promise in treating osteoarthritis in mice by improving cartilage and reducing inflammation even when administered at late stages of disease.
Journal Article
Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids
2018
Human pluripotent stem cell (hPSC)-derived intestinal organoids (hIOs) form 3D structures organized into crypt and villus domains, making them an excellent in vitro model system for studying human intestinal development and disease. However, hPSC-derived hIOs still require in vivo maturation to fully recapitulate adult intestine, with the mechanism of maturation remaining elusive. Here, we show that the co-culture with human T lymphocytes induce the in vitro maturation of hIOs, and identify STAT3-activating interleukin-2 (IL-2) as the major factor inducing maturation. hIOs exposed to IL-2 closely mimic the adult intestinal epithelium and have comparable expression levels of mature intestinal markers, as well as increased intestine-specific functional activities. Even after in vivo engraftment, in vitro-matured hIOs retain their maturation status. The results of our study demonstrate that STAT3 signaling can induce the maturation of hIOs in vitro, thereby circumventing the need for animal models and in vivo maturation.
Human pluripotent stem cell-derived intestinal organoids (hIOs) are a useful model with which to study intestinal development and disease, but they require in vivo maturation to resemble adult tissue. Here, the authors show that T lymphocyte-derived IL-2 induces hIO maturation in vitro through the activation of STAT3.
Journal Article
Comparison of the Antioxidant Potency of Four Triterpenes of Centella asiatica against Oxidative Stress
2024
We comparatively evaluated the antioxidant properties of key triterpenes from Centella asiatica, including asiatic acid (AA), asiaticoside, madecassic acid, and madecassoside, in several cell types, including skin fibroblasts, macrophages, hepatocytes, and endothelial cells, under conditions promoting oxidative stress. AA conferred the highest viability on Hs68 cells exposed to ultraviolet B (UVB) irradiation. Triterpene pretreatment attenuated the UVB-induced generation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the UVB-induced depletion of glutathione (GSH) in skin fibroblasts. AA most potently inhibited UVB-induced MMP generation, resulting in increased intracellular collagen levels. Pretreatment with triterpenes, particularly AA, significantly improved cell viability and attenuated TBHP-induced levels of ROS, alanine aminotransferase, and aspartate aminotransferase in HepG2 cells. Triterpenes attenuated ROS levels and reduced MDA and GSH expression in EA.hy926 cells. In RAW264.7 macrophages, production of nitric oxide, tumor necrosis factor-α, and interleukin-6 (indicators of LPS-induced oxidative damage) was significantly reduced by treatment with any of the triterpenes. Statistical analyses of triterpene biological activities using principal component analysis and hierarchical clustering revealed that AA exerted the greatest overall influence and showed remarkable activity in Hs68 and HepG2 cells.
Journal Article
Process guide for inferential studies using healthcare data from routine clinical practice to evaluate causal effects of drugs (PRINCIPLED): considerations from the FDA Sentinel Innovation Center
by
Wang, Shirley V
,
Rothman, Kenneth J
,
Toh, Sengwee
in
Causality
,
Clinical medicine
,
Delivery of Health Care
2024
This report proposes a stepwise process covering the range of considerations to systematically consider key choices for study design and data analysis for non-interventional studies with the central objective of fostering generation of reliable and reproducible evidence. These steps include (1) formulating a well defined causal question via specification of the target trial protocol; (2) describing the emulation of each component of the target trial protocol and identifying fit-for-purpose data; (3) assessing expected precision and conducting diagnostic evaluations; (4) developing a plan for robustness assessments including deterministic sensitivity analyses, quantitative bias analyses, and net bias evaluation; and (5) inferential analyses.
Journal Article