Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
168
result(s) for
"Handelsman, David J"
Sort by:
Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance
by
Handelsman, David J
,
Hirschberg, Angelica L
,
Bermon, Stephane
in
Athletes
,
Chromatography
,
Development and progression
2018
Abstract
Elite athletic competitions have separate male and female events due to men's physical advantages in strength, speed, and endurance so that a protected female category with objective entry criteria is required. Prior to puberty, there is no sex difference in circulating testosterone concentrations or athletic performance, but from puberty onward a clear sex difference in athletic performance emerges as circulating testosterone concentrations rise in men because testes produce 30 times more testosterone than before puberty with circulating testosterone exceeding 15-fold that of women at any age. There is a wide sex difference in circulating testosterone concentrations and a reproducible dose-response relationship between circulating testosterone and muscle mass and strength as well as circulating hemoglobin in both men and women. These dichotomies largely account for the sex differences in muscle mass and strength and circulating hemoglobin levels that result in at least an 8% to 12% ergogenic advantage in men. Suppression of elevated circulating testosterone of hyperandrogenic athletes results in negative effects on performance, which are reversed when suppression ceases. Based on the nonoverlapping, bimodal distribution of circulating testosterone concentration (measured by liquid chromatography-mass spectrometry)-and making an allowance for women with mild hyperandrogenism, notably women with polycystic ovary syndrome (who are overrepresented in elite athletics)-the appropriate eligibility criterion for female athletic events should be a circulating testosterone of <5.0 nmol/L. This would include all women other than those with untreated hyperandrogenic disorders of sexual development and noncompliant male-to-female transgender as well as testosterone-treated female-to-male transgender or androgen dopers.
Journal Article
Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome
by
Walters, Kirsty A.
,
Edwards, Melissa C.
,
Gilchrist, Robert B.
in
Abnormalities
,
Androgen receptors
,
Androgens
2017
Polycystic ovary syndrome (PCOS) is a complex hormonal disorder characterized by reproductive, endocrine, and metabolic abnormalities. As the origins of PCOS remain unknown, mechanism-based treatments are not feasible and current management relies on treatment of symptoms. Hyperandrogenism is the most consistent PCOS characteristic; however, it is unclear whether androgen excess, which is treatable, is a cause or a consequence of PCOS. As androgens mediate their actions via the androgen receptor (AR), we combined a mouse model of dihydrotestosterone (DHT)-induced PCOS with global and cell-specific AR-resistant (ARKO) mice to investigate the locus of androgen actions that mediate the development of the PCOS phenotype. Global loss of the AR reveals that AR signaling is required for all DHT-induced features of PCOS. Neuron-specific AR signaling was required for the development of dysfunctional ovulation, classic polycystic ovaries, reduced large antral follicle health, and several metabolic traits including obesity and dyslipidemia. In addition, ovariectomized ARKO hosts with wild-type ovary transplants displayed normal estrous cycles and corpora lutea, despite DHT treatment, implying extraovarian and not intraovarian AR actions are key loci of androgen action in generating the PCOS phenotype. These findings provide strong evidence that neuroendocrine genomic AR signaling is an important extraovarian mediator in the development of PCOS traits. Thus, targeting AR-driven mechanisms that initiate PCOS is a promising strategy for the development of novel treatments for PCOS.
Journal Article
Hormones and Aging: An Endocrine Society Scientific Statement
2023
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Journal Article
Rate and Extent of Recovery from Reproductive and Cardiac Dysfunction Due to Androgen Abuse in Men
2020
Abstract
Context
Androgen abuse impairs male reproductive and cardiac function, but the rate, extent, and determinants of recovery are not understood.
Objective
To investigate recovery of male reproductive and cardiac function after ceasing androgen intake in current and past androgen abusers compared with healthy non-users.
Methods
Cross-sectional, observational study recruited via social media 41 current and 31 past users (≥3 months since last use, median 300 days since last use) with 21 healthy, eugonadal non-users. Each provided a history, examination, and serum and semen sample and underwent testicular ultrasound, body composition analysis, and cardiac function evaluation.
Results
Current abusers had suppressed reproductive function and impaired cardiac systolic function and lipoprotein parameters compared with non- or past users. Past users did not differ from non-users, suggesting full recovery of suppressed reproductive and cardiac functions after ceasing androgen abuse, other than residual reduced testicular volume. Mean time to recovery was faster for reproductive hormones (anti-Mullerian hormone [AMH], 7.3 months; luteinizing hormone [LH], 10.7 months) than for sperm variables (output, 14.1 months) whereas spermatogenesis (serum follicle-stimulating hormone [FSH], inhibin B, inhibin) took longer. The duration of androgen abuse was the only other variable associated with slower recovery of sperm output (but not hormones).
Conclusion
Suppressed testicular and cardiac function due to androgen abuse is effectively fully reversible (apart from testis volume and serum sex hormone binding globulin) with recovery taking between 6 to 18 months after ceasing androgen intake with possible cumulative effects on spermatogenesis. Suppressed serum AMH, LH, and FSH represent convenient, useful, and underutilized markers of recovery from androgen abuse.
Journal Article
Macronutrient balance, reproductive function, and lifespan in aging mice
by
Walters, Kirsty A.
,
McMahon, Aisling C.
,
Ballard, John William O.
in
Aging
,
Aging - drug effects
,
Aging - physiology
2015
Significance A fundamental tenet of life-history theory is that reproduction and longevity trade off against one another. Experiments on invertebrates show that, rather than competing for limiting resources, reproduction and lifespan are optimized on different dietary macronutrient compositions. In mice, studies have yet to establish the relationship between macronutrient balance, reproduction, and lifespan. We evaluated the effects of macronutrients and energy on lifespan and reproductive function. Indicators of reproductive function (uterine mass, ovarian follicle number, testes mass, epididymal sperm counts) were optimized by high protein (P), low carbohydrate (C) diets whereas lifespan was greatest on low P:C diets. Corpora lutea and estrous cycling were higher in females on lower P:C diets. Macronutrient balance has profound and opposing effects on reproduction and longevity.
In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11).
Journal Article
Androgen Misuse and Abuse
2021
Abstract
Androgens are potent drugs requiring prescription for valid medical indications but are misused for invalid, unproven, or off-label reasons as well as being abused without prescription for illicit nonmedical application for performance or image enhancement. Following discovery and first clinical application of testosterone in the 1930s, commercialization of testosterone and synthetic androgens proliferated in the decades after World War II. It remains among the oldest marketed drugs in therapeutic use, yet after 8 decades of clinical use, the sole unequivocal indication for testosterone remains in replacement therapy for pathological hypogonadism, organic disorders of the male reproductive system. Nevertheless, wider claims assert unproven, unsafe, or implausible benefits for testosterone, mostly representing wishful thinking about rejuvenation. Over recent decades, this created an epidemic of testosterone misuse involving prescription as a revitalizing tonic for anti-aging, sexual dysfunction and/or obesity, where efficacy and safety remains unproven and doubtful. Androgen abuse originated during the Cold War as an epidemic of androgen doping among elite athletes for performance enhancement before the 1980s when it crossed over into the general community to become an endemic variant of drug abuse in sufficiently affluent communities that support an illicit drug industry geared to bodybuilding and aiming to create a hypermasculine body physique and image. This review focuses on the misuse of testosterone, defined as prescribing without valid clinical indications, and abuse of testosterone or synthetic androgens (androgen abuse), defined as the illicit use of androgens without prescription or valid indications, typically by athletes, bodybuilders and others for image-oriented, cosmetic, or occupational reasons.
Graphical Abstract
Graphical Abstract
Journal Article
Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood
by
Tan, Diana Weiting
,
Goonawardene, Mithran
,
Gilani, Syed Zulqarnain
in
Face - anatomy & histology
,
Face Shape
,
Female
2015
Prenatal testosterone may have a powerful masculinizing effect on postnatal physical characteristics. However, no study has directly tested this hypothesis. Here, we report a 20-year follow-up study that measured testosterone concentrations from the umbilical cord blood of 97 male and 86 female newborns, and procured three-dimensional facial images on these participants in adulthood (range: 21–24 years). Twenty-three Euclidean and geodesic distances were measured from the facial images and an algorithm identified a set of six distances that most effectively distinguished adult males from females. From these distances, a ‘gender score’ was calculated for each face, indicating the degree of masculinity or femininity. Higher cord testosterone levels were associated with masculinized facial features when males and females were analysed together (n = 183; r = −0.59), as well as when males (n = 86; r = −0.55) and females (n = 97; r = −0.48) were examined separately (p-values < 0.001). The relationships remained significant and substantial after adjusting for potentially confounding variables. Adult circulating testosterone concentrations were available for males but showed no statistically significant relationship with gendered facial morphology (n = 85, r = 0.01, p = 0.93). This study provides the first direct evidence of a link between prenatal testosterone exposure and human facial structure.
Journal Article
Defining the impact of dietary macronutrient balance on PCOS traits
2020
Lifestyle, mainly dietary, interventions are first-line treatment for women with polycystic ovary syndrome (PCOS), but the optimal diet remains undefined. We combined a hyperandrogenized PCOS mouse model with a systematic macronutrient approach, to elucidate the impact of dietary macronutrients on the development of PCOS. We identify that an optimum dietary macronutrient balance of a low protein, medium carbohydrate and fat diet can ameliorate key PCOS reproductive traits. However, PCOS mice display a hindered ability for their metabolic system to respond to diet variations, and varying macronutrient balance did not have a beneficial effect on the development of metabolic PCOS traits. We reveal that PCOS traits in a hyperandrogenic PCOS mouse model are ameliorated selectively by diet, with reproductive traits displaying greater sensitivity than metabolic traits to dietary macronutrient balance. Hence, providing evidence to support the development of evidence-based dietary interventions as a promising strategy for the treatment of PCOS, especially reproductive traits.
Lifestyle interventions are first-line treatment for women with polycystic ovary syndrome (PCOS), but the optimal diet remains undefined. Here the authors identify an optimum dietary macronutrient balance that can rectify PCOS reproductive traits in a mouse model of PCOS, while metabolic features were less sensitive to diet changes.
Journal Article
Association of urinary sex hormones with mood and behavior changes in a community adolescent cohort
by
Skinner, S. Rachel
,
Balzer, Ben W. R.
,
Paxton, Karen
in
17β-Estradiol
,
Adolescents
,
Aggression
2023
To examine the contribution of variation in sex hormone excretion to mood and behavioral changes in adolescent females and males. 277 (158 male) participants contributed data over the full duration of the study and could be included in the analyses. In females, analyses of absolute urine hormone levels found no relationship between estradiol and any outcome, but higher testosterone was significantly associated with depression and poorer sleep. Greater variability of both urine estradiol and testosterone was associated with lower total psychopathology, anxious/depressed and social problems scores. Greater variability in urine estradiol was associated with lower attention problems and impulsive aggression in females. In males, higher testosterone and estradiol levels were associated with rule-breaking, and poorer sleep, and no associations were found for gonadal hormone variability for males. Longitudinal measurement of both iso-sexual and contra-sexual gonadal hormones contributes to a more nuanced view of the impact of sex steroids on mood and behavior in adolescents. These findings may enlighten the understanding of the impact of sex steroids during normal male and female puberty with implications for hormone replacement therapies as well as management of common mood and behavioral problems.
Journal Article
Testosterone Induces Molecular Changes in Dopamine Signaling Pathway Molecules in the Adolescent Male Rat Nigrostriatal Pathway
by
Weickert, Cynthia Shannon
,
Owens, Samantha J.
,
Double, Kay L.
in
17β-Estradiol
,
Adolescents
,
Androgen receptors
2014
Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s) by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase), breakdown (catechol-O-methyl transferase; monoamine oxygenase), transport [vesicular monoamine transporter (VMAT), dopamine transporter (DAT)] and receptors (DRD1-D5)] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen receptor-driven events as estradiol had minimal effect. We conclude that nigrostriatal responsivity to dopamine may be modulated by testosterone acting via androgen receptors to alter gene expression of molecules involved in dopamine signaling during adolescence.
Journal Article