Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Hankey, Benjamin F."
Sort by:
Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths
On the basis of long-term follow-up data from the National Polyp Study, the authors estimate that mortality from colorectal cancer was about 50% lower among patients who had adenomatous polyps removed than in the general population. It has been a long-standing belief that screening for colorectal cancer can affect mortality from the disease in two ways: by detecting cancers at an early, curable stage and by detecting and removing adenomas. 1 Detection of early-stage colorectal cancer has been shown to be associated with a reduction in mortality from colorectal cancer in screening trials. 2 – 4 However, an adenomatous polyp is a much more common neoplastic finding on endoscopic screening. We previously reported that colonoscopic polypectomy in the National Polyp Study (NPS) cohort reduced the incidence of colorectal cancer. 5 An important question is whether the cancers prevented by colonoscopic . . .
Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study
Background Population-based cancer registry data from the Surveillance, Epidemiology, and End Results (SEER) Program at the National Cancer Institute (NCI) are mainly based on medical records and administrative information. Individual-level socioeconomic data are not routinely reported by cancer registries in the United States because they are not available in patient hospital records. The U.S. representative National Longitudinal Mortality Study (NLMS) data provide self-reported, detailed demographic and socioeconomic data from the Social and Economic Supplement to the Census Bureau's Current Population Survey (CPS). In 1999, the NCI initiated the SEER-NLMS study, linking the population-based SEER cancer registry data to NLMS data. The SEER-NLMS data provide a new unique research resource that is valuable for health disparity research on cancer burden. We describe the design, methods, and limitations of this data set. We also present findings on cancer-related health disparities according to individual-level socioeconomic status (SES) and demographic characteristics for all cancers combined and for cancers of the lung, breast, prostate, cervix, and melanoma. Methods Records of cancer patients diagnosed in 1973-2001 when residing 1 of 11 SEER registries were linked with 26 NLMS cohorts. The total number of SEER matched cancer patients that were also members of an NLMS cohort was 26,844. Of these 26,844 matched patients, 11,464 were included in the incidence analyses and 15,357 in the late-stage diagnosis analyses. Matched patients (used in the incidence analyses) and unmatched patients were compared by age group, sex, race, ethnicity, residence area, year of diagnosis, and cancer anatomic site. Cohort-based age-adjusted cancer incidence rates were computed. The impact of socioeconomic status on cancer incidence and stage of diagnosis was evaluated. Results Men and women with less than a high school education had elevated lung cancer rate ratios of 3.01 and 2.02, respectively, relative to their college educated counterparts. Those with family annual incomes less than $12,500 had incidence rates that were more than 1.7 times the lung cancer incidence rate of those with incomes $50,000 or higher. Lower income was also associated with a statistically significantly increased risk of distant-stage breast cancer among women and distant-stage prostate cancer among men. Conclusions Socioeconomic patterns in incidence varied for specific cancers, while such patterns for stage were generally consistent across cancers, with late-stage diagnoses being associated with lower SES. These findings illustrate the potential for analyzing disparities in cancer outcomes according to a variety of individual-level socioeconomic, demographic, and health care characteristics, as well as by area measures available in the linked database.
Cancer incidence and mortality patterns among specific Asian and Pacific Islander populations in the U.S
Objectives We report cancer incidence, mortality, and stage distributions among Asians and Pacific Islanders (API) residing in the U.S. and note health disparities, using the cancer experience of the non-Hispanic white population as the referent group. New databases added to publicly available SEER*Stat software will enable public health researchers to further investigate cancer patterns among API groups. Methods Cancer diagnoses among API groups occurring from 1 January 1998 to 31 December 2002 were included from 14 Surveillance, Epidemiology, and End Results (SEER) Program state and regional population-based cancer registries covering 54% of the U.S. API population. Cancer deaths were included from the seven states that report death information for detailed API groups and which cover over 68% of the total U.S. API population. Using detailed racial/ethnic population data from the 2000 decennial census, we produced incidence rates centered on the census year for Asian Indians/Pakistanis, Chinese, Filipinos, Guamanians, Native Hawaiians, Japanese, Kampucheans, Koreans, Laotians, Samoans, Tongans, and Vietnamese. State vital records offices do not report API deaths separately for Kampucheans, Laotians, Pakistanis, and Tongans, so mortality rates were analyzed only for the remaining API groups. Results Overall cancer incidence rates for the API groups tended be lower than overall rates for non-Hispanic whites, with the exception of Native Hawaiian women (All cancers rate = 488.5 per 100,000 vs. 448.5 for non-Hispanic white women). Among the API groups, overall cancer incidence and death rates were highest for Native Hawaiian and Samoan men and women due to high rates for cancers of the prostate, lung, and colorectum among Native Hawaiian men; cancers of the prostate, lung, liver, and stomach among Samoan men; and cancers of the breast and lung among Native Hawaiian and Samoan women. Incidence and death rates for cancers of the liver, stomach, and nasopharynx were notably high in several of the API groups and exceeded rates generally seen for non-Hispanic white men and women. Incidence rates were lowest among Asian Indian/Pakistani and Guamanian men and women and Kampuchean women. Asian Indian and Guamanian men and women also had the lowest cancer death rates. Selected API groups had less favorable distributions of stage at diagnosis for certain cancers than non-Hispanic whites. Conclusions Possible disparities in cancer incidence or mortality between specific API groups in our study and non-Hispanic whites (referent group) were identified for several cancers. Unfavorable patterns of stage at diagnosis for cancers of the colon and rectum, breast, cervix uteri, and prostate suggest a need for cancer control interventions in selected groups. The observed variation in cancer patterns among API groups indicates the importance of monitoring these groups separately, as these patterns may provide etiologic clues that could be investigated by analytic epidemiological studies.
Quality of Race, Hispanic Ethnicity, and Immigrant Status in Population-Based Cancer Registry Data: Implications for Health Disparity Studies
Population-based cancer registry data from the Surveillance, Epidemiology, and End Results (SEER) Program at the National Cancer Institute are based on medical records and administrative information. Although SEER data have been used extensively in health disparities research, the quality of information concerning race, Hispanic ethnicity, and immigrant status has not been systematically evaluated. The quality of this information was determined by comparing SEER data with self-reported data among 13,538 cancer patients diagnosed between 1973-2001 in the SEER—National Longitudinal Mortality Study linked database. The overall agreement was excellent on race (κ = 0.90, 95% CI = 0.88-0.91), moderate to substantial on Hispanic ethnicity (κ = 0.61, 95% CI = 0.58-0.64), and low on immigrant status (κ = 0.21. 95% CI = 0.10, 0.23). The effect of these disagreements was that SEER data tended to under-classify patient numbers when compared to self-identifications, except for the non-Hispanic group which was slightly over-classified. These disagreements translated into varying racial-, ethnic-, and immigrant status-specific cancer statistics, depending on whether self-reported or SEER data were used. In particular, the 5-year Kaplan-Meier survival and the median survival time from all causes for American Indians/Alaska Natives were substantially higher when based on self-classification (59% and 140 months, respectively) than when based on SEER classification (44% and 53 months, respectively), although the number of patients is small. These results can serve as a useful guide to researchers contemplating the use of population-based registry data to ascertain disparities in cancer burden. In particular, the study results caution against evaluating health disparities by using birth-place as a measure of immigrant status and race information for American Indians/Alaska Natives.
Partitioning Linear Trends in Age-Adjusted Rates
Objective: Surveillance of chronic diseases includes monitoring trends in age-adjusted rates in the general population. Statistics that are calculated to describe and compare trends include the annual percent change and the percent change for a specified time period. However, it is also of interest to determine the contribution specific diseases make to an overall trend in order to better understand the impact of interventions and changes in the prevalence of risk factors. The objective here is to provide a method for partitioning a linear trend in age-adjusted rates into disease-specific components. Methods: The method presented is based on linear regression. The decreasing trend in age-adjusted cancer mortality rates for the total United States during the period 1991-96 is analyzed to illustrate the method. Results: Trends in mortality for cancers of the colon/rectum, breast, lung/bronchus, and prostate are found to be responsible for 75% of the decreasing trend in cancer mortality. Conclusions: It is possible to partition an overall trend in age-adjusted rates under the assumption that it and the trends for all mutually exclusive and exhaustive subgroups of interest are linear.
Recent incidence trends for breast cancer in women and the relevance of early detection: An update
The steeply increasing incidence of breast cancer in women between 1982 and 1986 is examined. Data suggest that early detection may be playing a role in the recent increase in the incidence of breast cancer in women.