Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"Harberd, Nicholas P."
Sort by:
Modulating plant growth–metabolism coordination for sustainable agriculture
Enhancing global food security by increasing the productivity of green revolution varieties of cereals risks increasing the collateral environmental damage produced by inorganic nitrogen fertilizers. Improvements in the efficiency of nitrogen use of crops are therefore essential; however, they require an in-depth understanding of the co-regulatory mechanisms that integrate growth, nitrogen assimilation and carbon fixation. Here we show that the balanced opposing activities and physical interactions of the rice GROWTH-REGULATING FACTOR 4 (GRF4) transcription factor and the growth inhibitor DELLA confer homeostatic co-regulation of growth and the metabolism of carbon and nitrogen. GRF4 promotes and integrates nitrogen assimilation, carbon fixation and growth, whereas DELLA inhibits these processes. As a consequence, the accumulation of DELLA that is characteristic of green revolution varieties confers not only yield-enhancing dwarfism, but also reduces the efficiency of nitrogen use. However, the nitrogen-use efficiency of green revolution varieties and grain yield are increased by tipping the GRF4–DELLA balance towards increased GRF4 abundance. Modulation of plant growth and metabolic co-regulation thus enables novel breeding strategies for future sustainable food security and a new green revolution.
The balance of DELLA and GRF4 proteins in plants ensures the co-regulation of growth with metabolism and tipping this balance towards GRF4 leads to higher efficiency of nitrogen use.
Journal Article
The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency
2019
The
indica
and
japonica
rice (
Oryza sativa
) subspecies differ in nitrate (NO
3
−
) assimilation capacity and nitrogen (N) use efficiency (NUE). Here, we show that a major component of this difference is conferred by allelic variation at
OsNR2
, a gene encoding a NADH/NADPH-dependent NO
3
−
reductase (NR). Selection-driven allelic divergence has resulted in variant
indica
and
japonica OsNR2
alleles encoding structurally distinct OsNR2 proteins, with
indica
OsNR2 exhibiting greater NR activity.
Indica OsNR2
also promotes NO
3
−
uptake via feed-forward interaction with
OsNRT1.1B
, a gene encoding a NO
3
−
uptake transporter. These properties enable
indica OsNR2
to confer increased effective tiller number, grain yield and NUE on
japonica
rice, effects enhanced by interaction with an additionally introgressed
indica OsNRT1.1B
allele. In consequence,
indica OsNR2
provides an important breeding resource for the sustainable increases in
japonica
rice yields necessary for future global food security.
Indica
rice has higher nitrate assimilation and nitrogen use efficiency (NUE) than
japonica
rice, but the mechanism is unclear. Here, the authors reveal that the difference is partly due to allelic variation of a nitrate reductase encoding gene and this
indica
allele can increase yield potential and NUE.
Journal Article
The Angiosperm Gibberellin-GID1-DELLA Growth Regulatory Mechanism: How an \Inhibitor of an Inhibitor\ Enables Flexible Response to Fluctuating Environments
by
Harberd, Nicholas P.
,
Belfield, Eric
,
Yasumura, Yuki
in
Adaptation, Physiological
,
Angiospermae
,
Arabidopsis
2009
The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.
Journal Article
Transcription factor PIF4 controls the thermosensory activation of flowering
by
Alvey, Elizabeth
,
Harberd, Nicholas P.
,
Jaeger, Katja E.
in
631/208/212/2019
,
631/449/2491
,
631/449/2679/2681
2012
A novel mechanism by which warming temperatures can directly activate flowering in the model plant
Arabidopsis thaliana
.
The influence of temperature on flowering
Plant growth and development are affected by changes in temperature. In this study, Wigge and colleagues investigate how plants control the timing of their reproduction in response to increases in temperature. The authors provide a mechanism by which increasing temperatures can directly activate flowering in the model plant
Arabidopsis thaliana
. Flowering time is an important trait in crops, and mechanistic insights into how temperature increases affect this process will be important for mitigating the effects of climate change.
Plant growth and development are strongly affected by small differences in temperature
1
. Current climate change has already altered global plant phenology and distribution
2
,
3
, and projected increases in temperature pose a significant challenge to agriculture
4
. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT)
5
,
6
. How this occurs is, however, not understood, because the major pathway known to upregulate
FT
, the photoperiod pathway, is not required for thermal acceleration of flowering
6
. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate
FT
. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change.
Journal Article
Phosphate Starvation Root Architecture and Anthocyanin Accumulation Responses Are Modulated by the Gibberellin-DELLA Signaling Pathway in Arabidopsis
by
Gao, Xiuhua
,
Liao, Lili
,
Harberd, Nicholas P
in
anatomy & histology
,
Anthocyanins
,
Anthocyanins - metabolism
2007
Phosphate (Pi) is a macronutrient that is essential for plant growth and development. However, the low mobility of Pi impedes uptake, thus reducing availability. Accordingly, plants have developed physiological strategies to cope with low Pi availability. Here, we report that the characteristic Arabidopsis thaliana Pi starvation responses are in part dependent on the activity of the nuclear growth-repressing DELLA proteins (DELLAs), core components of the gibberellin (GA)-signaling pathway. We first show that multiple shoot and root Pi starvation responses can be repressed by exogenous GA or by mutations conferring a substantial reduction in DELLA function. In contrast, mutants having enhanced DELLA function exhibit enhanced Pi starvation responses. We also show that Pi deficiency promotes the accumulation of a green fluorescent protein-tagged DELLA (GFP-RGA [repressor of ga1-3]) in root cell nuclei. In further experiments, we show that Pi starvation causes a decrease in the level of bioactive GA and associated changes in the levels of gene transcripts encoding enzymes of GA metabolism. Finally, we show that the GA-DELLA system regulates the increased root hair length that is characteristic of Pi starvation. In conclusion, our results indicate that DELLA-mediated signaling contributes to the anthocyanin accumulation and root architecture changes characteristic of Pi starvation responses, but do not regulate Pi starvation-induced changes in Pi uptake efficiency or the accumulation of selected Pi starvation-responsive gene transcripts. Pi starvation causes a reduction in bioactive GA level, which, in turn, causes DELLA accumulation, thus modulating several adaptively significant plant Pi starvation responses.
Journal Article
An Arabidopsis Soil-Salinity—Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis
by
Smith, J. Andrew C.
,
Belfield, Eric J.
,
Harberd, Nicholas P.
in
Alleles
,
Arabidopsis
,
Arabidopsis - genetics
2013
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1—CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)—dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K + TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Journal Article
Fruit Growth in Arabidopsis Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses
by
Ljung, Karin
,
Fuentes, Sara
,
Østergaard, Lars
in
Arabidopsis - drug effects
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2012
Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1—mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction.
Journal Article
The potential of stable carbon and nitrogen isotope analysis of foxtail and broomcorn millets for investigating ancient farming systems
2022
Foxtail and broomcorn millets are the most important crops in northern China since the early Neolithic. However, little evidence is available on how people managed these two crops in the past, especially in prehistory. Previous research on major C 3 crops in western Eurasia demonstrated the potential of stable carbon and nitrogen isotope analysis of charred archaeobotanical remains to reveal the management of water and manure, respectively. Here, we evaluate the feasibility of a similar approach to C 4 millets. Foxtail and broomcorn millet plants grown in pots in a greenhouse under different manuring and watering regimes were analysed to test the effects of management on stable carbon and nitrogen isotope values of grains. Stable nitrogen isotope values of both millets increased as manuring level increased, ranging from 1.7 ‰ to 5.8 ‰ in different conditions; hence, it appears a feasible tool to identify manuring practices, in agreement with results from recent field studies. However, the two millets exhibit opposing trends in stable carbon isotope values as watering level increased. The shift in stable carbon isotope values of millets is also smaller than that observed in wheat grown in the same experimental environment, making it difficult to identify millet water status archaeologically. In addition, we charred millet grains at different temperatures and for varying durations to replicate macro-botanical remains recovered archaeologically, and to evaluate the offsets in carbon and nitrogen isotope values induced by charring. We found that the stable nitrogen isotope values of foxtail millet and broomcorn millet can shift up to 1–2 ‰ when charred, while the stable carbon isotope values change less than 0.3 ‰. Overall, we demonstrate that stable nitrogen isotope values of charred foxtail and broomcorn millet seeds could provide insight into past field management practices, and both carbon and nitrogen isotope values can together inform palaeodietary reconstruction.
Journal Article
The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor
2024
Abstract Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.
Journal Article
Integration of Plant Responses to Environmentally Activated Phytohormonal Signals
by
Straeten, Dominique van der
,
Schoutteten, Hermien
,
Moritz, Thomas
in
Abscisic Acid - metabolism
,
Abscisic Acid - pharmacology
,
Arabidopsis
2006
Plants live in fixed locations and survive adversity by integrating growth responses to diverse environmental signals. Here, we show that the nuclear-localized growth-repressing DELLA proteins of Arabidopsis integrate responses to independent hormonal and environmental signals of adverse conditions. The growth restraint conferred by DELLA proteins is beneficial and promotes survival. We propose that DELLAs permit flexible and appropriate modulation of plant growth in response to changes in natural environments.
Journal Article