Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Hartzell, Christine"
Sort by:
Inferring interiors and structural history of top-shaped asteroids from external properties of asteroid (101955) Bennu
Asteroid interiors play a key role in our understanding of asteroid formation and evolution. As no direct interior probing has been done yet, characterisation of asteroids’ interiors relies on interpretations of external properties. Here we show, by numerical simulations, that the top-shaped rubble-pile asteroid (101955) Bennu’s geophysical response to spinup is highly sensitive to its material strength. This allows us to infer Bennu’s interior properties and provide general implications for top-shaped rubble piles’ structural evolution. We find that low-cohesion (≲0.78 Pa at surface and ≲1.3 Pa inside) and low-friction (friction angle ≲ 35 ∘ ) structures with several high-cohesion internal zones can consistently account for all the known geophysical characteristics of Bennu and explain the absence of moons. Furthermore, we reveal the underlying mechanisms that lead to different failure behaviours and identify the reconfiguration pathways of top-shaped asteroids as functions of their structural properties that either facilitate or prevent the formation of moons. Asteroid interiors are key to understand their formation and evolution. Here, the authors show that numerically simulated low-cohesion and low-friction structures with several high-cohesion internal zones can explain asteroid Bennu’s geophysical characteristics and the absence of the moons.
Material parameter influence on the expression of impulse-induced surface dilation
We formulate a method for predicting peak particle forces in a wavefront within a randomly filled 3D granular channel. The wavefronts in our simulation are driven by a sustained impact originating in the bumpy floor of the channel. We show that, when generated in this manner, forces in the driven wavefront within the 3D assembly follow the same power law scaling on material properties and impact velocity as in a 1D chain. A simple scaling of the 1D forces matches results from simulated impact tests we conduct using Soft Sphere Discrete Element method simulations. We then quantify the magnitude of impulse-induced dilation that occurs as a result of varied material properties and gravitational environments, giving an equation that can be used to predict the lofting depth (depth to which particles experience bulk density changes as a result of a laterally propagating wavefront). As predicted by our equation and confirmed with simulated results, dilation is amplified as particle material properties become closer to lunar regolith grains, supporting the hypothesis that impulse-induced surface dilation is the lunar cold spot formation mechanism.
Simulation of lateral impulse induced inertial dilation at the surface of a vacuum-exposed granular assembly
We demonstrate for the first time that a lateral impulse experienced by a granular channel can induce an inertial bulk dilation over long distances across a granular medium with a mechanically free surface. The surface dilation requires zero overburden pressure (exposure to vacuum) and is precipitated by the passing of waves traveling barely above the sound speed (> Mach 1.05). We simulate this phenomenon using open source Soft Sphere Discrete Element Method software. We prepare channels of monodisperse, cohesive spherical particles exposed to vacuum and modeled as Hertzian springs. We validate our model by recreating acoustic wave, strong shock, and shear dilation behavior. We then create shocks within the channel to determine the sensitivity of surface dilation to wave speed, wave type, initial packing fraction, and boundary effects. The shocks we create undergo a rapid decay in strength and appear to propagate as solitary waves that can be sustained across the channel. We find that an inertial surface dilation is induced by compressive solitary waves, is insensitive to channel length, decreases with bed height, and increases substantially with initial packing fraction. A hard subsurface floor is required to maintain this wave over the entire channel. Free surface dilation induced by laterally propagating impulse loading could be implicated in the formation of Lunar Cold Spots, distal regions of low thermal inertia surrounding young craters on the Moon.
High fidelity, discrete element method simulation of magnetorheological fluids using accurate particle size distributions in LIGGGHTS extended with mutual dipole method
We simulate magnetorheological fluids (MRF) using open source LIGGGHTS soft sphere discrete element method code, extended by us to include a mutual dipole magnetic model. Our simulations take advantage of the many pair forces available in the LIGGGHTS framework, including SJKR cohesion, friction, and rolling resistance. In addition, we have included an uncoupled, Couette flow background carrier fluid. The simulated particles in this work are polydisperse, with distributions made to match the distributions used to produce magnetorheological fluids in literature, increasing the fidelity of the simulations. Using the accurate particle size distributions, high heritage contact models, and an uncoupled fluid model, we are able to match experimental MRF yield stress results more closely than with monodisperse simulations.
Analytic Calculation and Application of the Q-Law Guidance Algorithm Partial Derivatives
The closed-loop Q-Law guidance algorithm has been shown to be a very capable and efficient method for producing low-thrust trajectories. This paper poses a Q-Law optimization problem for computing locally optimal gain values and for enforcing nonlinear constraints on the initial state using nonlinear programming (NLP). Gradient-based optimization methods have been shown to benefit greatly when analytical partial derivatives are supplied to the optimizer. Therefore, we present derivations of the Q-Law thrust vector partial derivatives with respect to the Q-law gains as well as with respect to the spacecraft’s state. These partials are leveraged to produce a state transition matrix, which contains exact partial derivatives of the terminal state with respect to the NLP problem decision vector. The Q-Law NLP problem can be coupled with the Sims–Flanagan interplanetary model in the same optimization problem. In this approach, the NLP solver uses a Q-Law model to design the planetocentric capture/escape spirals and a Sims–Flanagan model to design the interplanetary legs, resulting in end-to-end trajectory optimization.
An Adaptive Magnetorheological Fluid-Based Robotic Claw with an Electro-Permanent Magnet Array
The increasing demand for the adept handling of a diverse range of objects in various grasp scenarios has spurred the development of more efficient and adaptable robotic claws. This study specifically focuses on the creation of an adaptive magnetorheological fluid (MRF)-based robotic claw, driven by electro-permanent magnet (EPM) arrays to enhance gripping capabilities across different task requirements. In pursuit of this goal, a two-finger MRF-based robotic claw was introduced, featuring two magnetorheological (MR) grippers equipped with MR elastomer (MRE) bladders and EPM arrays at the fingertips. The operational principle involved placing a target object between these MR grippers and adjusting the normal force applied to the object for effective grasping. During this process, the contact stiffness of the MR grippers was altered by activating the EPM arrays in three distinct operation modes: passive, short-range (SR), and long-range (LR). Through experimentation on a benchtop material testing machine, the holding performance of the MRF-based robotic claw with the integrated EPM arrays was systematically evaluated. This study empirically validates the feasibility and effectiveness of the MRF-based robotic claw when equipped with EPM arrays.
Electrostatic forces on grains near asteroids and comets
Dust on and near the surface of small planetary bodies (e.g. asteroids, the Moon, Mars’ moons) is subject to gravity, cohesion and electrostatic forces. Due to the very low gravity on small bodies, the behavior of small dust grains is driven by non-gravitational forces. Recent work by Scheeres et al. has shown that cohesion, specifically van der Waals force, is significant for grains on asteroids. In addition to van der Waals cohesion, dust grains also experience electrostatic forces, arising from their interaction with each other (through tribocharging) and the solar wind plasma (which produces both grain charging and an external electric field). Electrostatic forces influence both the interactions of grains on the surface of small bodies as well as the dynamics of grains in the plasma sheath above the surface. While tribocharging between identical dielectric grains remains poorly understood, we have recently expanded an existing charge transfer model to consider continuous size distributions of grains and are planning an experiment to test the charge predictions produced. Additionally, we will present predictions of the size of dust grains that are capable of detaching from the surface of small bodies.
The WheelCams on the IDEFIX rover
IDEFIX, the Martian Moons eXploration (MMX) mission Phobos rover, will be the first of its kind to attempt wheeled-locomotion on a low-gravity surface. The IDEFIX WheelCams, two cameras placed on the underside of the rover looking at the rover wheels, provide a unique opportunity to study the surface properties of Phobos, regolith behaviour on small-bodies and rover mobility in low-gravity. The information gained about Phobos’ surface will be of high importance to the landing and sampling operations of the main MMX spacecraft, in addition to being valuable for understanding the surface processes and geological history of Phobos. Here we introduce the WheelCam science objectives, the instrument and the characterisation activities. We also discuss the on-going preparations linked to the analysis and interpretation of the WheelCam images on the surface of Phobos.
Broad interests reap benefits for science
We asked young scientists this question: How do broad interests benefit your science? Scientists with a variety of hobbies responded that their extracurricular activities have enhanced a wide range of skills, from creativity to communication to resilience. Many also mentioned the value of clearing their minds and relaxing.