MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Material parameter influence on the expression of impulse-induced surface dilation
Material parameter influence on the expression of impulse-induced surface dilation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Material parameter influence on the expression of impulse-induced surface dilation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Material parameter influence on the expression of impulse-induced surface dilation
Material parameter influence on the expression of impulse-induced surface dilation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Material parameter influence on the expression of impulse-induced surface dilation
Material parameter influence on the expression of impulse-induced surface dilation
Journal Article

Material parameter influence on the expression of impulse-induced surface dilation

2024
Request Book From Autostore and Choose the Collection Method
Overview
We formulate a method for predicting peak particle forces in a wavefront within a randomly filled 3D granular channel. The wavefronts in our simulation are driven by a sustained impact originating in the bumpy floor of the channel. We show that, when generated in this manner, forces in the driven wavefront within the 3D assembly follow the same power law scaling on material properties and impact velocity as in a 1D chain. A simple scaling of the 1D forces matches results from simulated impact tests we conduct using Soft Sphere Discrete Element method simulations. We then quantify the magnitude of impulse-induced dilation that occurs as a result of varied material properties and gravitational environments, giving an equation that can be used to predict the lofting depth (depth to which particles experience bulk density changes as a result of a laterally propagating wavefront). As predicted by our equation and confirmed with simulated results, dilation is amplified as particle material properties become closer to lunar regolith grains, supporting the hypothesis that impulse-induced surface dilation is the lunar cold spot formation mechanism.