Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
75
result(s) for
"He, Yaomei"
Sort by:
LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway
2021
Background
Non-small cell lung cancer (NSCLC) is the most common type of human lung cancers, which has diverse pathological features. Although many signaling pathways and therapeutic targets have been defined to play important roles in NSCLC, limiting efficacies have been achieved.
Methods
Bioinformatics methods were used to identify differential long non-coding RNA expression in NSCLC. Real-time RT-PCR experiments were used to examine the expression pattern of lncRNA PKMYT1AR, miR-485-5p. Both in vitro and in vivo functional assays were performed to investigate the functional role of PKMYT1AR/miR-485-5p/PKMYT1 axis on regulating cell proliferation, migration and tumor growth. Dual luciferase reporter assay, fluorescent in situ hybridization (FISH), immunoblot, co-immunoprecipitation experiments were used to verify the molecular mechanism.
Result
Here, we identify a human-specific long non-coding RNA (lncRNA, ENST00000595422), termed PKMYT1AR (PKMYT1 associated lncRNA), that is induced in NSCLC by Yin Yang 1 (YY1) factor, especially in cancerous cell lines (H358, H1975, H1299, H1650, A549 and SPC-A1) compared to that in normal human bronchial epithelium cell line (BEAS-2B). We show that PKMYT1AR high expression correlates with worse clinical outcome, and knockdown of PKMYT1AR inhibits tumor cell proliferation, migration and xenograft tumor formation abilities. Bioinformatic analysis and a luciferase assay demonstrate that PKMYT1AR directly interacts with miR-485-5p to attenuate the inhibitory role on its downstream oncogenic factor PKMYT1 (the protein kinase, membrane-associated tyrosine/threonine 1) in NSCLC. Furthermore, we uncover that miR-485-5p is downregulated in both cancerous cell lines and peripheral blood serum isolated from NSCLC patients compared to reciprocal control groups. Consistently, forced expression of miR-485-5p inhibits the proliferation and migration abilities of tumor cells. Moreover, we provide evidence showing that PKMYT1AR targeting antisense oligonucleotide (ASO) dramatically inhibit tumor growth in vivo. Mechanistic study shows that PKMYT1AR/ miR-485-5p /PKMYT1 axis promotes cancer stem cells (CSCs) maintenance in NSCLC via inhibiting β-TrCP1 mediated ubiquitin degradation of β-catenin proteins, which in turn causes enhanced tumorigenesis.
Conclusions
Our findings reveal the critical role of PKMYT1AR/miR-485-5p /PKMYT1 axis during NSCLC progression, which could be used as novel therapeutic targets in the future.
Journal Article
MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling
2022
The incidence of cutaneous melanoma (CM) has been increasing annually worldwide. In this study, we identify that MrgprF, a MAS related GPR family member, is decreased in cutaneous melanoma tissues and cell lines due to hypermethylation of its promoter region, and show that patients with CM expressing high levels of MrgprF exhibit an improved clinical outcome. We demonstrate that MrgprF forced expression inhibits tumor cell proliferation, migration, xenograft tumor growth, and metastasis. On the contrary, MrgprF knockdown promotes tumor cell proliferation and transformation of immortalized human keratinocyte-HaCaT cells, supporting the inhibitory role of MrgprF during tumor progression. Mechanistic studies reveal that MrgprF reduces the phosphoinositol‑3‑kinase (PI3K) complex formation between p101 and p110γ subunits, the critical step for phosphatidylinositol-(3, 4)-P2 (PIP2) conversion to phosphatidylinositol-(3, 4, 5)-P3 (PIP3), and then reduces the activation of PI3K/Akt signaling. This effect can be reversed by Akt specific agonist SC79. In addition, AMG 706, a previously documented inhibitor for endothelial cell proliferation, is identified as a potential agonist for MrgprF, and can impede tumor growth both in vitro and in vivo. Taken together, our findings suggest that MrgprF, a novel tumor suppressor in cutaneous melanoma, may be useful as a therapeutic target in the future.
Journal Article
ANKRD29, as a new prognostic and immunological biomarker of non–small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway
2023
Background
The predominant cancer-related deaths worldwide are caused by lung cancer, particularly non-small cell lung cancer (NSCLC), despite the fact that numerous therapeutic initiatives have been devised to improve the outcomes. Ankyrin repeat domain (ANKRD) is one of the widespread protein structural motifs in eukaryotes but the functions of ANKRD proteins in NSCLC progression remains unclear.
Methods
We performed integrative bioinformatical analysis to determine the dysregulated expression of ANKRDs in multiple tumors and the association between ANKRD29 expression and the NSCLC tumor environment. Quantitative real-time PCR (qRT-PCR), western blot, immunohistochemistry (IHC), and tissue microarray (TMA) assays were used to investigate the expression of ANKRD29 in NSCLC cell lines. The role of ANKRD29 in NSCLC cell proliferation and migration in vitro was deteceted by 5-bromodeoxyuridine (BrdU) incorporation, colony formation, flow cytometry, would-healing, trans-well, and western blot experiment. RNA-seq technology was applied to deciper the molecular mechanism regulated by ANKRD29 in NSCLC.
Results
We constructed a valuable risk-score system for predicting the overall survival outcomes of NSCLC patients based on the expression of five hub ANKRD genes. And we found that the hub gene ANKRD29 was remarkedly decreased in NSCLC tissues and cell lines due to the promoter hypermethylation, and revealed that high ANKRD29 expression obviously correlated with patients’ better clinical outcome. Overexpression of ANKRD29 significantly inhibited cell proliferation and migration, promoted the cancerous cells’ sensitivity to carboplatin and enhanced the killing ability of T cells in NSCLC cells. Interestingly, ANKRD29 can be served as a biomarker to predict the response to immunotherapy in NSCLC. Mechanically, RNA-seq results showed that ANKRD29 could regulate MAPK signaling pathway. Moreover, we screened two potential agonists for ANKRD29.
Conclusions
ANKRD29 functions as a new tumor suppressor in NSCLC tumorigenesis and could be developed as a biomarker for prognostic prediction, immunotherapy response, and drug susceptibility evaluation of NSCLC in the future.
Journal Article
RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth
by
Shi, Peng
,
Yuan, Yixiao
,
Jiang, Xiulin
in
Cell and Developmental Biology
,
evolution
,
hypoxia adaptation
2021
Hypoxia occurs not only in natural environments including high altitude, underground burrows and deep sea, but also in human pathological conditions, such as hypoxic solid tumors. It has been well documented that hypoxia related signaling pathway is associated with a poor clinical outcome. Our group has recently identified multiple novel genes critical for solid tumor growth comparing the genome-wide convergent/parallel sequence evolution of highland mammals. Among them, a single mutation on the retinol saturase gene (
RETSAT
) containing amino acid switch from glutamine (Q) to arginine (R) at the position 247 was identified. Here, we demonstrate that RETSAT is mostly downregulated in multiple types of human cancers, whose lower expression correlates with worse clinical outcome. We show that higher expression of RETSAT is positively associated with immune infiltration in different human cancers. Furthermore, we identify that the promoter region of
RETSAT
is highly methylated, which leads to its decreased expressions in tumor tissues comparing to normal tissues. Furthermore, we show that RETSAT knockdown promotes, while its overexpression inhibits, the cell proliferation ability of mouse embryonic fibroblasts (MEFs) and B16
in vitro
. In addition, the mice carrying homozygous Q247R mutation (RETSATR/R) is more resistant to xenograft tumor formation, as well as DMBA/TPA induced cutaneous keratinocyte carcinoma formation, compared to littermate wild-type (RETSATQ/Q) mice. Mechanistic study uncovers that the oncogenic factor, the prolyl isomerase (PPIase) Pin1 and its related downstream signaling pathway, were both markedly repressed in the mutant mice compared to the wild-type mice. In summary, these results suggest that interdisciplinary study between evolution and tumor biology can facilitate identification of novel molecular events essential for hypoxic solid tumor growth in the future.
Journal Article
Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation
2022
Gliomas are the most aggressive primary brain tumors. However, no significant improvement in survival has been achieved with the addition of temozolomide (TMZ) or radiation as initial therapy, although many clinical efforts have been carried out to target various signaling pathways or putative driver mutations. Here, we report that glycosyltransferase 8 domain containing 1 (GLT8D1), induced by HIF-1α under a hypoxic niche, significantly correlates with a higher grade of glioma, and a worse clinical outcome. Depletion of GLT8D1 inhibits self-renewal of glioma stem cell (GSC) in vitro and represses tumor growth in glioma mouse models. GLT8D1 knockdown promotes cell cycle arrest at G2/M phase and cellular apoptosis with or without TMZ treatment. We reveal that GLT8D1 impedes CD133 degradation through the endosomal-lysosomal pathway by N-linked glycosylation and protein-protein interaction. Directly blocking the GLT8D1/CD133 complex formation by CD133N1~108 (referred to as FECD133), or inhibiting GLT8D1 expression by lercanidipine, suppresses Wnt/β-catenin signaling dependent tumorigenesis both in vitro and in patient-derived xenografts mouse model. Collectively, these findings offer mechanistic insights into how hypoxia promotes GLT8D1/CD133/Wnt/β-catenin signaling during glioma progression, and identify GLT8D1 as a potential therapeutic target in the future.
Journal Article
PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation
2020
Lung cancer is the leading cause of cancer related deaths worldwide. We have previously identified many differentially expressed genes (DEGs) from large scale pan-cancer dataset using the Cross-Value Association Analysis (CVAA) method. Here we focus on Progestin and AdipoQ Receptor 4 (PAQR4), a member of the progestin and adipoQ receptor (PAQR) family localized in the Golgi apparatus, to determine their clinical role and mechanism in the development of non-small cell lung cancer (NSCLC).
The protein expression profile of PAQR4 was examined by IHC using tissue microarrays, and the effects of PAQR4 on cell proliferation, colony formation and xenograft tumor formation were tested in NSCLC cells. Real-time RT-PCR, co-immunoprecipitation (co-IP) and GST-pulldown assays were used to explore the mechanism of action of PAQR4.
We provided evidence showing that PAQR4 is increased in NSCLC cancer cell lines (A549, H1299, H1650, H1975, H358, GLC-82 and SPC-A1), and identified many mutations in PAQR4 in non-small cell lung cancer (NSCLC) tissues. We demonstrated that PAQR4 high expression correlates with a worse clinical outcome, and that its knockdown suppresses cell proliferation by inducing apoptosis. Importantly, overexpressed PAQR4 physically interacts with Nrf2 in NSCLC cells, blocking the interaction between Nrf2 and Keap1.
Our results suggest that PAQR4 depletion enhances the sensitivity of cancerous cell to chemotherapy both
and xenograft tumor formation
, by promoting Nrf2 protein degradation through a Keap1-mediated ubiquitination process.
Journal Article
Engineering strategies to enhance oncolytic viruses in cancer immunotherapy
2022
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Journal Article
Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models
by
Yuan Fengjiao
,
Linglu, Yi
,
Ding Zhenyu
in
Adjuvants
,
Animal models
,
Antigen (tumor-associated)
2020
Development of personalized cancer vaccines based on neoantigens has become a new direction in cancer immunotherapy. Two forms of cancer vaccines have been widely studied: tumor-associated antigen (including proteins, peptides, or tumor lysates)-pulsed dendritic cell (DC) vaccines and protein- or peptide-adjuvant vaccines. However, different immune modalities may produce different therapeutic effects and immune responses when the same antigen is used. Therefore, it is necessary to choose a more effective neoantigen vaccination method. In this study, we compared the differences in immune and anti-tumor effects between neoantigen-pulsed DC vaccines and neoantigen-adjuvant vaccines using murine lung carcinoma (LL2) candidate neoantigens. The enzyme-linked immunospot (ELISPOT) assay showed that 4/6 of the neoantigen-adjuvant vaccines and 6/6 of the neoantigen-pulsed DC vaccines induced strong T-cell immune responses. Also, 2/6 of the neoantigen-adjuvant vaccines and 5/6 of the neoantigen-pulsed DC vaccines exhibited potent anti-tumor effects. The results indicated that the neoantigen-pulsed DC vaccines were superior to the neoantigen-adjuvant vaccines in both activating immune responses and inhibiting tumor growth. Our fundings provide an experimental basis for the selection of immune modalities for the use of neoantigens in individualized tumor immunotherapies.
Journal Article
Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2
by
Hu, Yisheng
,
Wang, Rong
,
Xu, Lei
in
Applied and Technical Physics
,
Biomaterials
,
Carbon nitride
2021
ZrO
2
/g-C
3
N
4
semiconductor photocatalytic materials were prepared by ultrasonic method. The effect of zirconia with different crystal structure on visible light photocatalytic activity of ZrO
2
/g-C
3
N
4
composite was investigated. Loading monoclinic and tetragonal mixed crystals ZrO
2
can improve the photocatalytic degradation efficiency of g-C
3
N
4
. The optimum composite with 15 wt% ZrO
2
/g-C
3
N
4
showed the superior photocatalytic activity for degradation of RhB and PNP under visible-light irradiation, which are 2.5 and 2.8 times higher than pure g-C
3
N
4
under same conditions. The main active species affecting photocatalytic degradation are holes (h
VB
+
) and ·O
2
−
by photocatalytic active species capture experiment, ·OH is also partially involved in the photocatalytic degradation. The 15 wt% ZrO
2
/g-C
3
N
4
has excellent catalytic performance and good stability in photocatalytic repeated experiments, and has a broad application prospect.
Graphic abstract
Journal Article
Sustained and targeted delivery of siRNA/DP7‐C nanoparticles from injectable thermosensitive hydrogel for hepatocellular carcinoma therapy
2021
Hepatocellular carcinoma (HCC) is one of the most lethal cancers in humans. The inhibition of peptidyl‐prolyl cis/trans isomerase (Pin1) gene expression may have great potential in the treatment of HCC. N‐Acetylgalactosamine (GalNAc) was used to target the liver. Cholesterol‐modified antimicrobial peptide DP7 (DP7‐C) acts as a carrier, the GalNAc‐siRNA/DP7‐C complex increases the uptake of GalNAc‐siRNA and the escape of endosomes in hepatocytes. In addition, DP7‐C nanoparticles and hydrogel‐assisted GalNAc‐Pin1 siRNA delivery can effectively enhance the stability and prolong the silencing effects of Pin1 siRNA. In an orthotopic liver cancer model, the GalNAc‐Pin1 siRNA/DP7‐C/hydrogel complex can potentially regulate Pin1 expression in hepatocellular carcinoma cells and effectively inhibit tumor progression. Our study proves that Pin1 siRNA is an efficient method for the treatment of HCC and provides a sustainable and effective drug delivery system for the suppression of liver cancer.
Summary of the synthesis of the GalNAc‐siRNA/DP7‐C complex and the sustained release strategy of the thermosensitive hydrogel and the process of Pin1 siRNA entering the cells to induce Pin1 inhibition. Inhibition of Pin1 slows the process of tumor growth.
Journal Article