Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
57 result(s) for "Hecht, Jochen"
Sort by:
Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming
Chromosomal architecture is known to influence gene expression, yet its role in controlling cell fate remains poorly understood. Reprogramming of somatic cells into pluripotent stem cells (PSCs) by the transcription factors (TFs) OCT4, SOX2, KLF4 and MYC offers an opportunity to address this question but is severely limited by the low proportion of responding cells. We have recently developed a highly efficient reprogramming protocol that synchronously converts somatic into pluripotent stem cells. Here, we used this system to integrate time-resolved changes in genome topology with gene expression, TF binding and chromatin-state dynamics. The results showed that TFs drive topological genome reorganization at multiple architectural levels, often before changes in gene expression. Removal of locus-specific topological barriers can explain why pluripotency genes are activated sequentially, instead of simultaneously, during reprogramming. Together, our results implicate genome topology as an instructive force for implementing transcriptional programs and cell fate in mammals. The authors analyze time-resolved changes in genome topology, gene expression, transcription-factor binding, and chromatin state during iPSC generation. They conclude that 3D genome reorganization generally precedes gene expression changes and that removal of locus-specific topological barriers explains why pluripotency genes are activated sequentially during reprogramming.
E2F6 initiates stable epigenetic silencing of germline genes during embryonic development
In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes; however, the molecular mechanisms of this specificity remain unclear. Here, we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in embryos, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long-term epigenetic silencing during mouse development. DNA methylation targets CpG island promoters of germline genes to repress their expression in mouse somatic cells. Here the authors show that a transcription factor E2F6 is required to target CpG island DNA methylation and epigenetic silencing to germline genes during early mouse development.
High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing
Background The complex genome of rapeseed ( Brassica napus ) is not well understood despite the economic importance of the species. Good knowledge of sequence variation is needed for genetics approaches and breeding purposes. We used a diversity set of B. napus representing eight different germplasm types to sequence genome-wide distributed restriction-site associated DNA (RAD) fragments for polymorphism detection and genotyping. Results More than 113,000 RAD clusters with more than 20,000 single nucleotide polymorphisms (SNPs) and 125 insertions/deletions were detected and characterized. About one third of the RAD clusters and polymorphisms mapped to the Brassica rapa reference sequence. An even distribution of RAD clusters and polymorphisms was observed across the B. rapa chromosomes, which suggests that there might be an equal distribution over the Brassica oleracea chromosomes, too. The representation of Gene Ontology (GO) terms for unigenes with RAD clusters and polymorphisms revealed no signature of selection with respect to the distribution of polymorphisms within genes belonging to a specific GO category. Conclusions Considering the decreasing costs for next-generation sequencing, the results of our study suggest that RAD sequencing is not only a simple and cost-effective method for high-density polymorphism detection but also an alternative to SNP genotyping from transcriptome sequencing or SNP arrays, even for species with complex genomes such as B. napus .
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Citizen science charts two major “stomatotypes” in the oral microbiome of adolescents and reveals links with habits and drinking water composition
Background The oral cavity comprises a rich and diverse microbiome, which plays important roles in health and disease. Previous studies have mostly focused on adult populations or in very young children, whereas the adolescent oral microbiome remains poorly studied. Here, we used a citizen science approach and 16S profiling to assess the oral microbiome of 1500 adolescents around Spain and its relationships with lifestyle, diet, hygiene, and socioeconomic and environmental parameters. Results Our results provide a detailed snapshot of the adolescent oral microbiome and how it varies with lifestyle and other factors. In addition to hygiene and dietary habits, we found that the composition of tap water was related to important changes in the abundance of several bacterial genera. This points to an important role of drinking water in shaping the oral microbiota, which has been so far poorly explored. Overall, the microbiome samples of our study can be clustered into two broad compositional patterns (stomatotypes), driven mostly by Neisseria and Prevotella , respectively. These patterns show striking similarities with those found in unrelated populations. Conclusions We hypothesize that these stomatotypes represent two possible global optimal equilibria in the oral microbiome that reflect underlying constraints of the human oral niche. As such, they should be found across a variety of geographical regions, lifestyles, and ages.
Genome-Wide Binding of Posterior HOXA/D Transcription Factors Reveals Subgrouping and Association with CTCF
Homeotic genes code for key transcription factors (HOX-TFs) that pattern the animal body plan. During embryonic development, Hox genes are expressed in overlapping patterns and function in a partially redundant manner. In vitro biochemical screens probing the HOX-TF sequence specificity revealed largely overlapping sequence preferences, indicating that co-factors might modulate the biological function of HOX-TFs. However, due to their overlapping expression pattern, high protein homology, and insufficiently specific antibodies, little is known about their genome-wide binding preferences. In order to overcome this problem, we virally expressed tagged versions of limb-expressed posterior HOX genes (HOXA9-13, and HOXD9-13) in primary chicken mesenchymal limb progenitor cells (micromass). We determined the effect of each HOX-TF on cellular differentiation (chondrogenesis) and gene expression and found that groups of HOX-TFs induce distinct regulatory programs. We used ChIP-seq to determine their individual genome-wide binding profiles and identified between 12,721 and 28,572 binding sites for each of the nine HOX-TFs. Principal Component Analysis (PCA) of binding profiles revealed that the HOX-TFs are clustered in two subgroups (Group 1: HOXA/D9, HOXA/D10, HOXD12, and HOXA13 and Group 2: HOXA/D11 and HOXD13), which are characterized by differences in their sequence specificity and by the presence of cofactor motifs. Specifically, we identified CTCF binding sites in Group 1, indicating that this subgroup of HOX-proteins cooperates with CTCF. We confirmed this interaction by an independent biological assay (Proximity Ligation Assay) and demonstrated that CTCF is a novel HOX cofactor that specifically associates with Group 1 HOX-TFs, pointing towards a possible interplay between HOX-TFs and chromatin architecture.
Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma
MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology.
BKV Clearance Time Correlates With Exhaustion State and T-Cell Receptor Repertoire Shape of BKV-Specific T-Cells in Renal Transplant Patients
Reactivation of the BK polyomavirus is known to lead to severe complications in kidney transplant patients. The current treatment strategy relies on decreasing the immunosuppression to allow the immune system to clear the virus. Recently, we demonstrated a clear association between the resolution of BKV reactivation and reconstitution of BKV-specific CD4 T-cells. However, which factors determine the duration of viral infection clearance remains so far unclear. Here we apply a combination of in-depth multi-parametric flow cytometry and NGS-based CDR3 beta chain receptor repertoire analysis of BKV-specific T-cells to a cohort of 7 kidney transplant patients during the clinical course of BKV reactivation. This way we followed TCR repertoires at single clone levels and functional activity of BKV-specific T-cells during the resolution of BKV infection. The duration of BKV clearance did not depend on the number of peripheral blood BKV-specific T-cells nor on a few immunodominant BKV-specific T-cell clones. Rather, the T-cell receptor repertoire diversity and exhaustion status of BKV-specific T-cells affected the duration of viral clearance: high clonotype diversity and lack of PD1 and TIM3 exhaustion markers on BKV-specific T-cells was associated with short clearance time. Our data thus demonstrate how the diversity and the exhaustion state of the T-cells can determine the clinical course of BKV infection.
Increased presence and differential molecular imprinting of transit amplifying cells in psoriasis
Psoriasis is a very common chronic inflammatory skin disease characterized by epidermal thickening and scaling resulting from keratinocyte hyperproliferation and impaired differentiation. Pathomechanistic studies in psoriasis are often limited by using whole skin tissue biopsies, neglecting their stratification and cellular diversity. This study aimed at characterizing epidermal alterations in psoriasis at the level of keratinocyte populations. Epidermal cell populations were purified from skin biopsies of psoriasis patients and healthy donors using a novel cell type-specific approach. Molecular characterization of the transit-amplifying cells (TAC), the key players of epidermal renewal, was performed using immunocytofluorescence-technique and integrated multiscale-omics analyses. Already TAC from non-lesional psoriatic skin showed altered methylation and differential expression in 1.7% and 1.0% of all protein-coding genes, respectively. In psoriatic lesions, TAC were strongly expanded showing further increased differentially methylated (10-fold) and expressed (22-fold) genes numbers. Importantly, 17.2% of differentially expressed genes were associated with respective gene methylations. Compared with non-lesional TAC, pathway analyses revealed metabolic alterations as one feature predominantly changed in TAC derived from active psoriatic lesions. Overall, our study showed stage-specific molecular alterations, allows new insights into the pathogenesis, and implies the involvement of epigenetic mechanisms in lesion development in psoriasis.Key messagesTransit amplifying cell (TAC) numbers are highly increased in psoriatic lesionsPsoriatic TAC show profound molecular alterations & stage-specific identityTAC from unaffected areas already show first signs of molecular alterationsLesional TAC show a preference in metabolic-related alterations
MRSA Transmission on a Neonatal Intensive Care Unit: Epidemiological and Genome-Based Phylogenetic Analyses
Methicillin-resistant Staphylococcus aureus (MRSA) may cause prolonged outbreaks of infections in neonatal intensive care units (NICUs). While the specific factors favouring MRSA spread on neonatal wards are not well understood, colonized infants, their relatives, or health-care workers may all be sources for MRSA transmission. Whole-genome sequencing may provide a new tool for elucidating transmission pathways of MRSA at a local scale. We applied whole-genome sequencing to trace MRSA spread in a NICU and performed a case-control study to identify risk factors for MRSA transmission. MRSA genomes had accumulated sequence variation sufficiently fast to reflect epidemiological linkage among individual patients, between infants and their mothers, and between infants and staff members, such that the relevance of individual nurses' nasal MRSA colonization for prolonged transmission could be evaluated. In addition to confirming previously reported risk factors, we identified an increased risk of transmission from infants with as yet unknown MRSA colonisation, in contrast to known MRSA-positive infants. The integration of epidemiological (temporal, spatial) and genomic data enabled the phylogenetic testing of several hypotheses on specific MRSA transmission routes within a neonatal intensive-care unit. The pronounced risk of transmission emanating from undetected MRSA carriers suggested that increasing the frequency or speed of microbiological diagnostics could help to reduce transmission of MRSA.