Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Heindl, Cornelia"
Sort by:
Blockade of TNF-α rapidly inhibits pain responses in the central nervous system
There has been a consistent gap in understanding how TNF-α neutralization affects the disease state of arthritis patients so rapidly, considering that joint inflammation in rheumatoid arthritis is a chronic condition with structural changes. We thus hypothesized that neutralization of TNF-α acts through the CNS before directly affecting joint inflammation. Through use of functional MRI (fMRI), we demonstrate that within 24 h after neutralization of TNF-α, nociceptive CNS activity in the thalamus and somatosensoric cortex, but also the activation of the limbic system, is blocked. Brain areas showing blood-oxygen level-dependent signals, a validated method to assess neuronal activity elicited by pain, were significantly reduced as early as 24 h after an infusion of a monoclonal antibody to TNF-α. In contrast, clinical and laboratory markers of inflammation, such as joint swelling and acute phase reactants, were not affected by anti-TNF-α at these early time points. Moreover, arthritic mice overexpressing human TNF-α showed an altered pain behavior and a more intensive, widespread, and prolonged brain activity upon nociceptive stimuli compared with wild-type mice. Similar to humans, these changes, as well as the rewiring of CNS activity resulting in tight clustering in the thalamus, were rapidly reversed after neutralization of TNF-α. These results suggest that neutralization of TNF-α affects nociceptive brain activity in the context of arthritis, long before it achieves anti-inflammatory effects in the joints.
GlyR α3: An essential target for spinal PGE2-Mediated inflammatory pain sensitization
Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR α3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR α3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR α3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR α3 may provide a previously unrecognized molecular target in pain therapy.
Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype
Blockade of prostaglandin (PG) production by COX inhibitors is the treatment of choice for inflammatory pain but is also prone to severe side effects. Identification of signaling elements downstream of COX inhibition, particularly of PG receptor subtypes responsible for pain sensitization (hyperalgesia), provides a strategy for better-tolerated analgesics. Here, we have identified PGE2 receptors of the EP2 receptor subtype as key signaling elements in spinal inflammatory hyperalgesia. Mice deficient in EP2 receptors (EP2-/- mice) completely lack spinal PGE2-evoked hyperalgesia. After a peripheral inflammatory stimulus, EP2-/- mice exhibit only short-lasting peripheral hyperalgesia but lack a second sustained hyperalgesic phase of spinal origin. Electrophysiological recordings identify diminished synaptic inhibition of excitatory dorsal horn neurons as the dominant source of EP2 receptor-dependent hyperalgesia. Our results thus demonstrate that inflammatory hyperalgesia can be treated by targeting of a single PG receptor subtype and provide a rational basis for new analgesic strategies going beyond COX inhibition.
Nanoenviroments of the β-Subunit of L-Type Voltage-Gated Calcium Channels in Adult Cardiomyocytes
In cardiomyocytes, Ca 2+ influx through L-type voltage-gated calcium channels (LTCCs) following membrane depolarization regulates crucial Ca 2+ -dependent processes including duration and amplitude of the action potentials and excitation-contraction coupling. LTCCs are heteromultimeric proteins composed of the Ca v α 1 , Ca v β, Ca v α 2 δ and Ca v γ subunits. Here, using ascorbate peroxidase (APEX2)-mediated proximity labeling and quantitative proteomics, we identified 61 proteins in the nanoenvironments of Ca v β 2 in cardiomyocytes. These proteins are involved in diverse cellular functions such as cellular trafficking, cardiac contraction, sarcomere organization and excitation-contraction coupling. Moreover, pull-down assays and co-immunoprecipitation analyses revealed that Ca v β 2 interacts with the ryanodine receptor 2 (RyR2) in adult cardiomyocytes, probably coupling LTCCs and the RyR2 into a supramolecular complex at the dyads. This interaction is mediated by the Src-homology 3 domain of Ca v β 2 and is necessary for an effective pacing frequency-dependent increase of the Ca 2+ -induced Ca 2+ release mechanism in cardiomyocytes.
Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype
Blockade of prostaglandin (PG) production by COX inhibitors is the treatment of choice for inflammatory pain but is also prone to severe side effects. Identification of signaling elements downstream of COX inhibition, particularly of PG receptor subtypes responsible for pain sensitization (hyperalgesia), provides a strategy for better-tolerated analgesics. Here, we have identified PGE2 receptors of the EP2 receptor subtype as key signaling elements in spinal inflammatory hyperalgesia. Mice deficient in EP2 receptors (EP2–/– mice) completely lack spinal PGE2-evoked hyperalgesia. After a peripheral inflammatory stimulus, EP2–/– mice exhibit only short-lasting peripheral hyperalgesia but lack a second sustained hyperalgesic phase of spinal origin. Electrophysiological recordings identify diminished synaptic inhibition of excitatory dorsal horn neurons as the dominant source of EP2 receptor–dependent hyperalgesia. Our results thus demonstrate that inflammatory hyperalgesia can be treated by targeting of a single PG receptor subtype and provide a rational basis for new analgesic strategies going beyond COX inhibition.
Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system
There has been a consistent gap in understanding how TNF-α neutralization affects the disease state of arthritis patients so rapidly, considering that joint inflammation in rheumatoid arthritis is a chronic condition with structural changes. We thus hypothesized that neutralization of TNF-α acts through the CNS before directly affecting joint inflammation. Through use of functional MRI (fMRI), we demonstrate that within 24 h after neutralization of TNF-α, nociceptive CNS activity in the thalamus and somatosensoric cortex, but also the activation of the limbic system, is blocked. Brain areas showing blood-oxygen level-dependent signals, a validated method to assess neuronal activity elicited by pain, were significantly reduced as early as 24 h after an infusion of a monoclonal antibody to TNF-α. In contrast, clinical and laboratory markers of inflammation, such as joint swelling and acute phase reactants, were not affected by anti-TNF-α at these early time points. Moreover, arthritic mice overexpressing human TNF-α showed an altered pain behavior and a more intensive, widespread, and prolonged brain activity upon nociceptive stimuli compared with wild-type mice. Similar to humans, these changes, as well as the rewiring of CNS activity resulting in tight clustering in the thalamus, were rapidly reversed after neutralization of TNF-α. These results suggest that neutralization of TNF-α affects nociceptive brain activity in the context of arthritis, long before it achieves anti-inflammatory effects in the joints. [PUBLICATION ABSTRACT]
Blockade of TNF-α rapidly inhibits pain responses in the central nervous system
There has been a consistent gap in understanding how TNF-α neutralization affects the disease state of arthritis patients so rapidly, considering that joint inflammation in rheumatoid arthritis is a chronic condition with structural changes. We thus hypothesized that neutralization of TNF-α acts through the CNS before directly affecting joint inflammation. Through use of functional MRI (fMRI), we demonstrate that within 24 h after neutralization of TNF-α, nociceptive CNS activity in the thalamus and somatosensoric cortex, but also the activation of the limbic system, is blocked. Brain areas showing blood-oxygen level-dependent signals, a validated method to assess neuronal activity elicited by pain, were significantly reduced as early as 24 h after an infusion of a monoclonal antibody to TNF-α. In contrast, clinical and laboratory markers of inflammation, such as joint swelling and acute phase reactants, were not affected by anti-TNF-α at these early time points. Moreover, arthritic mice overexpressing human TNF-α showed an altered pain behavior and a more intensive, widespread, and prolonged brain activity upon nociceptive stimuli compared with wild-type mice. Similar to humans, these changes, as well as the rewiring of CNS activity resulting in tight clustering in the thalamus, were rapidly reversed after neutralization of TNF-α. These results suggest that neutralization of TNF-α affects nociceptive brain activity in the context of arthritis, long before it achieves anti-inflammatory effects in the joints.
Blockade of TNF-α rapidly inhibits pain responses in the central nervous system
There has been a consistent gap in understanding how TNF-α neutralization affects the disease state of arthritis patients so rapidly, considering that joint inflammation in rheumatoid arthritis is a chronic condition with structural changes. We thus hypothesized that neutralization of TNF-α acts through the CNS before directly affecting joint inflammation. Through use of functional MRI (fMRI), we demonstrate that within 24 h after neutralization of TNF-α, nociceptive CNS activity in the thalamus and somatosensoric cortex, but also the activation of the limbic system, is blocked. Brain areas showing blood-oxygen level-dependent signals, a validated method to assess neuronal activity elicited by pain, were significantly reduced as early as 24 h after an infusion of a monoclonal antibody to TNF-α. In contrast, clinical and laboratory markers of inflammation, such as joint swelling and acute phase reactants, were not affected by anti-TNF-α at these early time points. Moreover, arthritic mice overexpressing human TNF-α showed an altered pain behavior and a more intensive, widespread, and prolonged brain activity upon nociceptive stimuli compared with wild-type mice. Similar to humans, these changes, as well as the rewiring of CNS activity resulting in tight clustering in the thalamus, were rapidly reversed after neutralization of TNF-α. These results suggest that neutralization of TNF-α affects nociceptive brain activity in the context of arthritis, long before it achieves anti-inflammatory effects in the joints.
GlyR alpha 3: An Essential Target for Spinal PGE sub(2)-Mediated Inflammatory Pain Sensitization
Prostaglandin E sub(2) (PGE sub(2)) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha 3) by PGE sub(2)-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha 3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha 3 not only lack the inhibition of glycinergic neurotransmission by PGE sub(2) seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE sub(2) injection or peripheral inflammation. Thus, GlyR alpha 3 may provide a previously unrecognized molecular target in pain therapy.