Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,504 result(s) for "Henderson, Brian"
Sort by:
New Evidence on the Financialization of Commodity Markets
This paper uses a novel dataset of commodity-linked notes (CLNs) to examine the impact of the flows of financial investors on commodity futures prices. Investor flows into and out of CLNs are passed to and withdrawn from the futures markets via issuers' trades to hedge their CLN liabilities. The flows are not based on information about futures price movements but nonetheless cause increases and decreases in commodity futures prices when they are passed through to and withdrawn from the futures markets. These finding are consistent with the hypothesis that non-information-based financial investments have important impacts on commodity prices.
The Eagle has landed : 50 years of lunar science fiction
\"In celebration of the 50th anniversary of the Apollo 11 landing, the endlessly-mysterious moon is explored in this reprint short science fiction anthology from award-winning editor and anthologist Neil Clarke ... On July 20, 1969, mankind made what had only years earlier seemed like an impossible leap forward: when Apollo 11 became the first manned mission to land on the moon, and Neil Armstrong the first person to step foot on the lunar surface. While there have only been a handful of new missions since, the fascination with our planet's satellite continues, and generations of writers and artists have imagined the endless possibilities of lunar life. From adventures in the vast gulf of space between the earth and the moon, to journeys across the light face to the dark side, to the establishment of permanent residences on its surface, science fiction has for decades given readers bold and forward-thinking ideas about our nearest interstellar neighbor and what it might mean to humankind, both now and in our future. [This book] collects the best stories written in the fifty years since mankind first stepped foot on the lunar surface, serving as a shining reminder that the moon is and always has been our most visible and constant example of all the infinite possibility of the wider universe\"-- Provided by publisher.
Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci
Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.
Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus
Multiple discrete regions at 8q24 were recently shown to contain alleles that predispose to many cancers including prostate, breast, and colon. These regions are far from any annotated gene and their biological activities have been unknown. Here we profiled a 5-megabase chromatin segment encompassing all the risk regions for RNA expression, histone modifications, and locations occupied by RNA polymerase II and androgen receptor (AR). This led to the identification of several transcriptional enhancers, which were verified using reporter assays. Two enhancers in one risk region were occupied by AR and responded to androgen treatment; one contained a single nucleotide polymorphism (rs11986220) that resides within a FoxA1 binding site, with the prostate cancer risk allele facilitating both stronger FoxA1 binding and stronger androgen responsiveness. The study reported here exemplifies an approach that may be applied to any risk-associated allele in non-protein coding regions as it emerges from genome-wide association studies to better understand the genetic predisposition of complex diseases.
Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence
Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618–8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy “genuine” and “hoax” objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.
Consistent Association of Type 2 Diabetes Risk Variants Found in Europeans in Diverse Racial and Ethnic Groups
It has been recently hypothesized that many of the signals detected in genome-wide association studies (GWAS) to T2D and other diseases, despite being observed to common variants, might in fact result from causal mutations that are rare. One prediction of this hypothesis is that the allelic associations should be population-specific, as the causal mutations arose after the migrations that established different populations around the world. We selected 19 common variants found to be reproducibly associated to T2D risk in European populations and studied them in a large multiethnic case-control study (6,142 cases and 7,403 controls) among men and women from 5 racial/ethnic groups (European Americans, African Americans, Latinos, Japanese Americans, and Native Hawaiians). In analysis pooled across ethnic groups, the allelic associations were in the same direction as the original report for all 19 variants, and 14 of the 19 were significantly associated with risk. In summing the number of risk alleles for each individual, the per-allele associations were highly statistically significant (P<10(-4)) and similar in all populations (odds ratios 1.09-1.12) except in Japanese Americans the estimated effect per allele was larger than in the other populations (1.20; P(het) = 3.8×10(-4)). We did not observe ethnic differences in the distribution of risk that would explain the increased prevalence of type 2 diabetes in these groups as compared to European Americans. The consistency of allelic associations in diverse racial/ethnic groups is not predicted under the hypothesis of Goldstein regarding \"synthetic associations\" of rare mutations in T2D.
Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins
Fibronectin, a large and essential multidomain glycoprotein, with multiple adhesive properties, functioning as a key link between cells and their extracellular matrices, is now recognized to be the target for a large number of bacterial proteins, which are generally considered to function as bacterial adhesins. In the last decade, an avalanche of bacterial fibronectin-binding proteins (FnBPs) has been identified, and the bioinformatics, structural biology, biological function and role in the virulence of a growing number of both Gram-positive and Gram-negative proteins have begun to emerge. The evidence suggests that fibronectin has a wider biological remit than was previously thought and that bacterial FnBPs have actions over and above that of simple adhesion. This article provides an update on our current understanding of FnBPs from both Gram-negative and Gram-positive bacteria and their proposed roles in bacterial colonization, bacterial virulence and bacteria-host interactions.
Structural complexity in ramp-compressed sodium to 480 GPa
The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na + ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states. The properties of materials can be drastically modified under extreme pressure. Here the authors investigate ramp-compressed sodium to 5 million atmospheres with in situ X-ray diffraction and optical reflectivity, revealing a complex temperature-driven polymorphism and suggesting the formation of a previously predicted electride phase.
A common genetic risk factor for colorectal and prostate cancer
Variants on chromosome 8q24 contribute risk for prostate cancer; here, we tested whether they also modulate risk for colorectal cancer. We studied 1,807 affected individuals and 5,511 controls and found that one variant, rs6983267, is also significantly associated with colorectal cancer (odds ratio = 1.22; P = 4.4 × 10 −6 ) and that the apportionment of risk among the variants differs significantly between the two cancers. Comprehensive testing in the region uncovered variants capturing significant additional risk. Our results show that variants at 8q24 have different effects on cancer development that depend on the tissue type.